Evaluating asynchronous schwarz solvers for Exascale

Pratik Nayak pratik.nayak@kit.edu Hartwig Anzt hartwig.anzt@kit.edu

Steinbuch Center for Computing, Karlsruhe Institute for Technology

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

6th November 2019

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup
Objec	tives					

- **1** What our objectives are:
 - Study asynchronous iterative algorithm behaviour.
 - Use Schwarz methods as a test-bed due to the simplicity of the algorithm
 - In particular, study multi-GPU, multi-node problems.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

Motivation

Motivation and Background

Interlude

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DDE/SC/OAR Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
2	Slerra - IBM Power System SY22LC, IBM POWER9 22C 3.16Hz, NVIDIA Votta GV100, Dual-rait Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW28010 2800 1.459Hz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
4	Tlanhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.20Hz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61,444.5	100,678.7	18,482
5	Frontera - Dell Có420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR, Dell EMC Texas Advanced Computing Center/Unix of Texas United States	448,448	23,516.4	38,745.9	
ó	Piz Daint - Cray XCS0, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100, Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	387,872	21,230.0	27,154.3	2,384

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Laborte, O. Shacham, K. Okukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rugo

(b) Computing trends

(a) Top 6

- Partially regular synchronization between processes.
- Might work for large number of processes.
- Partially known task graph.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup
			Interlud	e		

Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory: 32GB.

- Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory: 32GB.
- 2 What is the maximum size (number of rows) of a matrix that can be stored on the GPU for computing its solution with a given right hand side?

- Back of the envelope.
 - Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory: 32GB
 - What is the maximum size (number of rows) of a matrix that can be stored on the GPU 2 for computing its solution with a given right hand side?
 - B Assume: CSR matrix storage format: Let N be the number of rows, nnz be the number of non-zeros represented as $\sigma * N^2$, with σ as the sparsity factor. This is a conservative estimate without consideration for the auxillary vectors. CSR stores two array of length of nnz and one array with length N. For a solution, we need an additional N for right hand side array and the solution array.

Total number of bytes:

$$\texttt{num_bytes} = (8 \times \textit{N} + 16 \times \sigma \textit{N}^2) + 2 \times (8 \times \textit{N})$$

So to get the maximal number of rows solve:

$$16 \times \sigma N^2 + 24 \times N = 3.2 \times 10^{10}$$

This gives

Table: Maximal number of rows.

	Sparsity factor, σ	Number of rows, N
	0.02	3.2e5
SuiteSparse-avg	← 0.002	1e6
	0.0002	3e6

Our case of Laplace

- Similar calculation gives: stencil_size/number of rows (For 5 point stencil $\approx 5/N$)
- Therefore, Laplace is an hard problem for Schwarz type solvers.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

The Schwarz algorithm

Figure: Generic Domain

Problem:

$$\mathcal{L}x = f \text{ in } \Omega; \qquad \mathcal{B}x = g \text{ on } \partial \Omega$$

Linear system:

Ax = f

Stationary iterative method:

$$x^{k+1} = Bx^k + c$$

For convergence, $\rho(B) < 1$.

Domain decomposition methods

Figure: Overlapping and non-overlapping domains

- Initially used to prove convergence of the Poisson problem for general domains (Schwarz, 1870). Slow convergence.
- 2 Gained popularity with parallel computers.
- **3** Solve each subset(subdomain) independently and communicate between each "iteration".
- Restricted additive Schwarz methods: An improvement of the parallel version of the Schwarz method for faster convergence.

Restricted Additive Schwarz methods

Used widely as a preconditioner:

$$M_{RAS}^{-1} = \sum_{j}^{N} \tilde{R}_{j}^{T} A_{j}^{-1} R_{j}$$

Group unknowns into subsets:

$$x_j = \tilde{R}_j x, \ j = 1, ..., N$$

 \tilde{R}_j is the rectangular Restriction matrices which corresponds to a non-overlapping decomposition.

Restricted Additive Schwarz

Compute using the full overlapped sub-matrix, but update only your locally associated values.

Restricted Additive Schwarz methods

RAS:

$$x_{p}^{k+1} = x_{p}^{k} + \sum_{j}^{N} \tilde{R}_{p}(R_{j}f - (R_{j}AR_{j}^{T})^{-1}R_{j}x^{k})$$

Advantages:

- **1** Saves communication compared to Additive Schwarz.
- 2 Reduced iteration count compared to Additive Schwarz.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

Interlude 2

The problem with Schwarz.

The Schwarz algorithm

Interlude

Parallel Schwarz method with two subdomains

Interlude 2

Parallel Schwarz method with sixteen subdomains

The problem with Schwarz - Fixes

Optimized schwarz

- Allow for better exchange of information at the boundaries. Modify the interface exchange from zeroth order function to a first order function.
- Method loses generality, more complicated for general problems.

Coarse grid

Coarse grid preconditioning: Borrow idea of a coarse grid preconditioner from Multi-grid.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

Implementation and Experimentation

ion	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Bacl
he S	ichwarz it	erative solver.				
Algor	ithm 1 Schv	varz Iterative solver				-
1: p	rocedure IT	ERATIVE SOLUTION	(A, x, b)			
2:	procedure	INITIALIZATION				
3:	Partiti	on matrix		⊳ 1D /	objective based	
4:	Distrib	ute data				
5:	Initializ	e data				
6:	procedure	Solve				
7:	while <i>i</i>	<i>ter < max_iter</i> or ur	ntil convergenc	e do		
8:	Loc	ally solve the matrix		⊳ I 1	terative / <mark>direct</mark>	2
9:	Exc	hange boundary info	rmation			
10:	Upo	late boundary inform	nation			
11:	Che	eck for Convergence	e Þ	Centralized(Tree based)/	Decentralized	
12:	Gather	the final solution ve	ctor			

Experimentation Parameters

- Everything implemented with Ginkgo.
- 2 Experiments performed on Summit, ORNL.
 - 1 6 GPU's per node, NVIDIA Tesla V100's.
- 3 Global convergence is tree-based (Yamazaki et.al, 2019).
- 4 RDMA communication with MPI-onesided functions.
- **5** Partitioning with METIS / simple 1D.
- 6 Test problem: Laplace 5 point stencil.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

Results

Asynchronous speedup

(a) Metis partitioning

(b) Naive partitioning

Figure: Speedup of the asynchronous schwarz for different partitionings

Backup

Effect of Partitioning

Interlude

(b) Synchronous

Figure: Speedup of the METIS partitioning over Naive 1D partitioning.

Effect of Partitioning: Communication patterns

Figure: Split up of function timings - Naive 1D and Metis

Interlude

ackup

Effect of Partitioning: Communication patterns

(a) Metis

(b) Naive 1D

Figure: Split up of function timings - Naive 1D and Metis

Effect of Overlap - METIS - Twosided

(a) 8 elements v/s 16 elements

(b) 2 elements v/s 16 elements

Figure: Effect of overlap - METIS partitioning

⁽a) 8 elements v/s 16 elements

2 elements v/s 16 elements (b)

Figure: Effect of overlap - Naive 1D partitioning

Summary and Future work

Summary

- Asynchronous methods can improve the overall time to solution.
- Communication pattern and load balancing are important factors.
- The plain Schwarz method does not scale well, particularly with a regular 1D communication setup.

Future Work

- Extend the algorithm to Optimized Schwarz.
- Use hybrid-CPU-GPU approach.
- Event based communication for only periodic information transfer.

Motivation	Interlude	The Schwarz algorithm	Interlude 2	Implementation and Experimentation	Results	Backup

Backup

(a) Metis partitioning

(b) Naive partitioning

Figure: Speedup of the asynchronous schwarz for different partitionings

Interlude The Schwarz algorithm Interlude 2 Backup

Effect of Overlap - METIS - Onesided

(b) 2 v/s 16

Figure: Effect of overlap - METIS partitioning

(b) 2 v/s 16

Figure: Effect of overlap - Naive 1D partitioning