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Introduction The jet

Turbulent Jet ?

Class of free turbulent flows.

Applications include jet exhausts, industrial mixing processes,
combustion etc,.

Reynolds number can range from 1000 to 106 and higher.

Scalar transport usually present, both active and passive.
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Introduction The jet

How does it look? [Credit: The Slow Mo guys (youtube)]
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Introduction Objectives

Objectives

1 Identify issues faced with scalar transport modeling for turbulent jets
at high Reynolds numbers.

2 Develop and implement a method to accurately model the scalar
transport phenomena.

3 Compare the improvement in the model with the previous methods
and report on the results.
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Introduction Fart Physics!
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Introduction Theory and ideas

Our setting

A compressible high Re, high Ma number flow.

Direct Numerical Simulation.

Navier–Stokes–Fourier system with additional Scalar transport
equation.

A full 3D flow.

Pratik Nayak Masters Thesis 19th June, 2017 7 / 32



Introduction Theory and ideas

Figure: The free turbulent jet schematic
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Introduction Theory and ideas

Navier–Stokes–Fourier system

Mass:
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (1)

Momentum:
∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂τij
∂xj

(2)

Energy:
∂E

∂t
+

∂

∂xj
uj(p + E ) =

∂

∂xj
κ
∂T

∂xj
+
∂uiτij
∂xj

(3)

Scalar transport:

∂ρYk

∂t
+
∂ρujYk

∂xj
=

∂

∂xj

(
ρκscal

∂Yk

∂xj

)
+ ωk (4)
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Introduction Theory and ideas

Reynolds number effects

Figure: The effect of Reynolds number, Left: Re = 2× 103, Right: Re = 2× 108

L
η
∼ Re3/4 (5)
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Introduction Theory and ideas

Spatial discretization - compact finite difference

Derivative:

αf ′i−1 + f ′i + αf ′i+1 = d
fi+7/2 − fi−7/2

h
+ c

fi+5/2 − fi−5/2
h

+b
fi+3/2 − fi−3/2

h
+ a

fi+1/2 − fi−1/2
h

(6)

Interpolation:

αfi−1 + fi + αfi+1 = d(fi+7/2 + fi−7/2) + c(fi+5/2 + fi−5/2)

+b(fi+3/2 + fi−3/2) + a(fi+1/2 + fi−1/2)
(7)

1 Tri-diagonal linear systems.

2 Spectral-like resolution, suitable for turbulent flows [Lele, 1992].

3 Staggered grid [Boersma, 2005].
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Implementation Discretization

Grids - Staggered and Co-located

(a) Staggered discretization grid (b) Co-located discretization grid

Figure: 2D grid for discretization
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Implementation Discretization

Why are Non-oscillatory methods required ?
−

0.
2 0

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

2.
2−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

C
te
st

(x
,t

)

Exact Solution
Compact FD

WENO 4thorder
WENO 6thorder

(a) Sine wave

0.
68 0.

7

0.
72

0.
74

0.
76

0.
78 0.

8

0.
82

0.
84

0.
86

−1

−0.95

−0.9

−0.85

−0.8

x
C
te
st

(x
,t

)

Exact Solution
Compact FD

WENO 4thorder
WENO 6thorder

(b) Sine wave: Focussed

Figure: Numerical Tests: Comparison of WENO with central compact schemes, 1
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Implementation Discretization

Why are Non-oscillatory methods required ?
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Figure: Numerical Tests: Comparison of WENO with central compact schemes, 2
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Implementation Discretization

ENO and WENO

Stencils:

Sr (i) = {xi−r , ..., xi−r+k−1}, r = 0, ..., k − 1 (8)

Non-linear weighting:

vi+ 1
2

=
k−1∑
j=0

ωrv
(r)

i+ 1
2

(9)

ωr ≥ 0;
k−1∑
r=0

ωr = 1 (10)

ωr =
αr∑k−1
s=0 αs

, r = 0, ..., k − 1 (11)

αr =
dr

(ε+ βr )2
, βr =

k−1∑
l=1

∫ x
i+1

2

x
i− 1

2

∆x2l−1

(
∂ lpr (x)

∂ lx

)2

dx (12)
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Implementation Discretization

Hybrid-compact WENO

Linear Hybrid:

f̃ hyb
i+ 1

2

= (1− σ)f̃ upw
i+ 1

2

+ σf̃ cent
i+ 1

2
=

k∑
j=0

yj f̃
j

i+ 1
2

(13)

σ = min

(
1,
%i+ 1

2

%c

)
(14)

%i+ 1
2

= min(%i−1, %i , %i+1, %i+2) (15)

%i =
|2(fi+1 − fi )(fi − fi−1)|+ δ

(fi+1 − fi )2 + (fi − fi−1)2 + δ
(16)

Hybrid WENO:

f̃ hyb
i+ 1

2

=
k∑

j=0

ωj f̃
j

i+ 1
2

(17)
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Implementation Discretization

Flux splitting

1 Upwinding requires information from the correct domain of
dependence.

Flux is
f (u) = f +(u) + f −(u) (18)

where

df +(u)

du
≥ 0

df −(u)

du
≤ 0 (19)

Lax-Friedrichs:

f ±(u) =
1

2
(f (u)± αu ; α = max(|f ′(u)|) (20)
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Implementation Discretization

Flux splitting

Figure: Stencils for flux splitting

Pratik Nayak Masters Thesis 19th June, 2017 18 / 32



Implementation Discretization

Temporal discretization

Runge–Kutta, explicit method

Un+1 = Un + ∆t
s∑

i=0

biKi (21)

Table: Butcher Tableau - RK4
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1 0 0 1
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Implementation Boundary conditions

Boundary conditions

1 Inflow and outflow: addition of locally supersonic axial velocity.

2 Lateral boundaries: Damping required to eliminate reflections from
boundaries.

− A(x , y , z)(Q−Qtar ) (22)

3 Additional filtering to remove high wavenumber components using a
compact filter.

4 Lagrange extrapolation at boundaries to calculate ghost points for
WENO interpolation.
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Implementation Boundary conditions

Boundary conditions: Inflow and outflow

1 Inflow :

u =
Ma

2

(
1− tanh

[
B

(
r

rjet
−

rjet
r

)])
; v = 0; w = 0

ρ = 1 +

(
T0

Tjet

)
u

Ma

E =
1

γ(γ − 1)
+

1

2
ρu2

Yk =

{
1.0 , d ≤ djet

0.0 , else

(23)

B = B(θ, t) = B0 +
∑
m

∑
n

Bnm cos(fnmt + φnm)cos(mθ + ψnm)

(24)
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Implementation Parallelization

Parallelized using MPI

1 Domain decomposed using the 2decomp library.

Figure: Domain Decomposition
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Implementation Parallelization

Efficiency ?
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Figure: Strong scaling test, Problem size: 128× 64× 64
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Results

Improvement in solution

(a) Compact FD (b) Compact WENO

Figure: Oscillations in scalar concentration,Yk fields, Re = 8500
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Results

Method comparisons

(a) Scalar concentration:
Compact FD

(b) Scalar concentration:
WENO, low dissipation

(c) Scalar concentration:
WENO, high dissipation

Figure: Scalar concentration contours
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Results Validation

Validation with experiments

Grid size: 960 x 480 x 480; ∆t = 1/200 ; CFL ∼ 0.5
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Figure: Comparison with experimental results at Re = 1× 104, y normal
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Results Validation

Decay rates

1 Expected decay rate: Between 5.0 and 5.9 for a compressible
turbulent jet, [Bodony,2004].

Method Decay rate
Experimental, HCG 5.78

Experimental, WF 5.71

Current DNS 5.11

Table: Decay rates of NACV at Re = 1× 104
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Results Experiments

(a) Compact FD, Sc =
1.0

(b) Compact WENO, Sc =
1.0

(c) Compact WENO, Sc
= 0.5

Figure: Scalar concentration,Yk fields, Re = 8500
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Results Experiments

Gaussian type behaviour of averaged axial velocities
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Figure: Comparison of WENO at Sc = 0.5 and Sc = 1.0 at Re = 8500
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Results Experiments
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Method Decay rate
Compact WENO, Sc = 1.0 6.62

Compact WENO, Sc = 0.5 6.17

Table: Decay rates of NACC at Re = 8.5× 103
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Conclusions

Conclusions

1 Central methods produce unphysical oscillations for problems of
hyperbolic nature.

2 A WENO or ENO interpolation can remove these oscillations.

3 Using a hybrid WENO reduces dissipation and allows for a wider
range of scales to be captured.

4 Decay rate of between 5 to 5.9 as expected for axial velocity.

5 A higher decay rate for the concentration close to 6 as previously
observed. [Boersma, 1998]

6 Gaussian type profile for axial velocity perpendicular to flow axis.

7 Instability modes depend on Schmidt numbers, only one type can
dominate the flow.

8 Lower Schmidt number: Varicose mode, Higher Schmidt number:
Helical mode.
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Conclusions

Thank You

Any questions ?

p.v.nayak@tudelft.nl
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