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The jet
Turbulent Jet ?

Class of free turbulent flows.

Applications include jet exhausts, industrial mixing processes,
combustion etc,.

Reynolds number can range from 1000 to 10° and higher.

Scalar transport usually present, both active and passive.

Pratik Nayak Masters Thesis 19th June, 2017 3/32



The jet
How does it look? [Credit: The Slow Mo guys (youtube)]

S
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Introduction Objectives

Objectives

@ Identify issues faced with scalar transport modeling for turbulent jets
at high Reynolds numbers.

@ Develop and implement a method to accurately model the scalar
transport phenomena.

© Compare the improvement in the model with the previous methods
and report on the results.
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Introduction Theory and ideas

Our setting
@ A compressible high Re, high Ma number flow.
@ Direct Numerical Simulation.
@ Navier—Stokes—Fourier system with additional Scalar transport
equation.
o A full 3D flow.
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Entrainment

" Entrainment

Figure: The free turbulent jet schematic

Pratik Nayak Masters Thesis 19th June, 2017 8/32



Introduction Theory and ideas

Navier—Stokes—Fourier system

Mass: 9
dp
8t + 7(IOUJ) 0
Momentum: 9 9 9
pui o ]
5t + D% (pujuj + pdjj) ax;
Energy:
8E+ 0 ui(p+ E) = iKﬁl+8u,TU
ot " ox; 0P ox; Ox; | Ox;

Scalar transport:
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Introduction Theory and ideas

Reynolds number effects

s i

Figure: The effect of Reynolds number, Left: Re = 2 x 103, Right: Re = 2 x 108

c
0 Re3/* (5)
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Introduction Theory and ideas

Spatial discretization - compact finite difference

Derivative:

fivze —fiz)2 N Cf;+5/2 — fi_5)2
h h
(6)
fiva2 — fiiz) N afi+1/2 —fi_ip
h h

afl +f +afly, =d

+b

Interpolation:

afi1 + fi+ afiyy = d(fip72 + fizz2) + c(fizs)2 + fizs2)

(7)
+b(fiy3/2 + fi32) + a(fir1/2 + fi1)2)

© Tri-diagonal linear systems.
@ Spectral-like resolution, suitable for turbulent flows [Lele, 1992].
© Staggered grid [Boersma, 2005].

Pratik Nayak Masters Thesis 19th June, 2017 11/32



Rl
Grids - Staggered and Co-located

(i-1ji+1) Gli+1) (i+ 115 +1) (i—1fj+1) (ifj+1) (i+1j+1)
o
pYile, Top PYile. Tp pYile Thp pYoelLpuo pYue|Tpue  pYeTop o
(i-1.7) tithd (i.5) i (i+1.5) (i —1,5) i 5) (i+1,])
a1
(-1p4-1) (if—1) (i+1)j-1) i-1f-1) (i.li-1) G-
(a) Staggered discretization grid (b) Co-located discretization grid

Figure: 2D grid for discretization
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Implementation Discretization

Why are Non-oscillatory methods required 7
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(a) Sine wave (b) Sine wave: Focussed

Figure: Numerical Tests: Comparison of WENO with central compact schemes, 1
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Implementation Discretization

Why are Non-oscillatory methods required 7
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Figure: Numerical Tests: Comparison of WENO with central compact schemes, 2
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ENO and WENO

Stencils:
Sr(i) == {X,',r, ...,X,',rJrk,l}, r = 07 ceuy k—1 (8)
Non-linear weighting:
k—1
RED I ©)
j=0
k—1
wr >0 Zwr =1 (10)
r=0
(073
wy = , r=0,...k—1
S o ()
k—1 2
dr itd o or [ 0'pr(x)
r= T o r= A d 12
@ (e + B,)? p = /X ) x 0'x X (12)
—17%1
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Diseretization
Hybrid-compact WENO

Linear Hybrid:

fhyb (1 )f-upw + f-cent — Zyjfj \

i

Qi41
oc=min| 1, "
Oc

Q,’+% — min(giflv Oi, 0i+1, Qi+2)

0 = 12(fis1 — £i)(fi — fiz1)| + 0
" (i — B2+ (fi—fii1)? 46

Hybrid WENO:
hyb
f Z /+f
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Discretzation
Flux splitting

@ Upwinding requires information from the correct domain of

dependence.
Flux is
f(u) = f+(u)+f_(u) (18)
where
+ —
df 7 (u) >0 df ~(u) <0 (19)
du du

Lax-Friedrichs:

- o= max(|f(u)) (20)
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Rl
Flux splitting
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Figure: Stencils for flux splitting
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Implementation Discretization

Temporal discretization

Runge—Kutta, explicit method

Table: Butcher Tableau - RK4
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i=0

Masters Thesis

0

1)1

112 4

210 3

110 0 1
101 1 1
6 3 3 6

19th June, 2017

(21)

19/32



Implementation Boundary conditions

Boundary conditions

@ Inflow and outflow: addition of locally supersonic axial velocity.
@ Lateral boundaries: Damping required to eliminate reflections from
boundaries.
— A(x,y,2)(Q — Qtar) (22)
© Additional filtering to remove high wavenumber components using a
compact filter.

@ Lagrange extrapolation at boundaries to calculate ghost points for
WENO interpolation.
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Implementation Boundary conditions

Boundary conditions: Inflow and outflow

Q@ Inflow :

(23)
R B
Yy —-1) 2
y, = 1.0 ,d < djet
0.0 ,else

B=B(0,t) =By + Z Z B m COS(famt + Pnm)cos(mb + Ypm)
m n
(24)
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Implementation Parallelization

Parallelized using MPI

© Domain decomposed using the 2decomp library.

rank,|

rank, -,

v

Figure: Domain Decomposition

Pratik Nayak

Masters Thesis

19th June, 2017

22/32



Paralelization
Efficiency ?

1.8 *
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1.2¢ *

run time per time-step(s)
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Figure: Strong scaling test, Problem size: 128 x 64 x 64
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Improvement in solution

(a) Compact FD (b) Compact WENO

Figure: Oscillations in scalar concentration, Y} fields, Re = 8500
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Results

Method comparisons

Y,
1.000e+00

7.000e-03

(a) Scalar concentration: (b) Scalar
Compact FD WENO, low dissipation
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(c) Scalar concentration:
WENO, high dissipation
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Validation with experiments

Grid size: 960 x 480 x 480; At =1/200 ; CF

L~05
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(a) 1/X behaviour

Figure: Comparison with experimental results
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(b) Decay rates

at Re = 1 x 10*, y normal
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Kalidziop
Decay rates

© Expected decay rate: Between 5.0 and 5.9 for a compressible
turbulent jet, [Bodony,2004].

Method Decay rate
Experimental, HCG 5.78
Experimental, WF 5.71
Current DNS 5.11

Table: Decay rates of NACV at Re = 1 x 10*
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Results Experiments

Y,
1.000e+00

-2.000e-09

(a) Compact FD, Sc = b) Compact WENO, Sc = (c) Compact WENO, Sc
1.0 1.0 =05

Figure: Scalar concentration, Yy fields, Re =-8500
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Gaussian type behaviour of averaged axial velocities

)
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(a) WENO, Sc = 1.0, at x/D = 12 (b) WENO, Sc = 0.5, at x/D = 12

Figure: Comparison of WENO at Sc = 0.5 and Sc = 1.0 at Re = 8500
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Figure: Decay rates for Sc= 1.0 and Sc = 0.5.

Method Decay rate
Compact WENO, Sc =1.0 | 6.62
Compact WENO, Sc =05 | 6.17

Table: Decay rates of NACC at Re = 8.5 x 103
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Conclusions

Conclusions

o

Central methods produce unphysical oscillations for problems of
hyperbolic nature.

A WENO or ENO interpolation can remove these oscillations.

Using a hybrid WENO reduces dissipation and allows for a wider
range of scales to be captured.

Decay rate of between 5 to 5.9 as expected for axial velocity.

A higher decay rate for the concentration close to 6 as previously
observed. [Boersma, 1998]

Gaussian type profile for axial velocity perpendicular to flow axis.

Instability modes depend on Schmidt numbers, only one type can
dominate the flow.

Lower Schmidt number: Varicose mode, Higher Schmidt number:
Helical mode.
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Conclusions

Thank You

Any questions ?

p.v.nayak@tudelft.nl
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