
ETH Zürich

and

Delft University of Technology

A Navier Stokes Solver for the GPU

by

Pratik Nayak
supervised by

Prof. Peter Arbenz, Computer Science Department,

ETH Zürich
and

Dr. Rene Pecnik, Process and Energy Lab,

TU Delft

A project report submitted in partial fulfillment for the

Master of Science programme

in

Solid and Fluid Mechanics

at the

Mechanical, Maritime and Materials Engineering Department, TU Delft

December 5th, 2016

p.v.nayak@student.tudelft.nl
arbenz@inf.ethz.ch
arbenz@inf.ethz.ch
r.pecnik@tudelft.nl
r.pecnik@tudelft.nl
http://www.3me.tudelft.nl/en/

“God put me on this earth to accomplish a certain number of things. Right now, I am so far

behind, I will never die.”

Calvin from Calvin and Hobbes by Bill Watterson.

“The human brain is finite. The powers of its imagination, infinite.”

Acknowledgements

I would like to thank Prof. Peter Arbenz for the opportunity to work on a project with him

and guiding me throughout the project. I would also like to thank Dr. Rene Pecnik for his

support. I am indebted to the IDEA League for supporting me for this project and helping

me cope with the living costs in Zürich. I would also like to heartily thank Prof. Arbenz for

supporting me to attend the CSCS Summer School for High Performance computing, which

helped me prepare for the project.

I would like to also thank the Swiss National Supercomputing Centre (CSCS) at Lugano,

Switzerland and the Max Planck Insitute at Garching, Germany for providing computing

resources. This project would not have been possible without them.

Last but not the least, I would like to thank the Delft Wind Energy Institute (DUWIND) for

giving me an opportunity to study at TU Delft by supporting me through their scholarship.

I am extremely grateful to them.

ii

Contents

Acknowledgements ii

Symbols v

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Goals and Objectives . 3

2 Methodology and Ideas 4

2.1 Methodology . 4

2.2 Ideas . 6

2.2.1 Directional splitting . 6

2.2.2 Solution strategies . 8

2.2.2.1 Problems with Algorithm 1 10

2.3 Meshing and post-processing . 11

2.3.1 Meshing . 11

2.3.2 Post-processing . 12

3 MPI code and optimizations 13

3.1 Message Passing Interface and usage . 13

3.2 Modules and subroutines . 14

3.3 Optimizations . 20

3.3.1 Memory Optimizations . 20

4 GPU code and optimizations 22

4.1 Graphical Processing Units and programming for general purpose 22

4.1.1 Programming model . 23

4.1.2 Threads and Blocks . 23

4.1.3 Memory handling . 24

4.1.3.1 Global Memory . 24

4.1.3.2 Shared Memory . 25

4.1.3.3 Pinned Memory . 25

4.1.3.4 Unified Memory . 26

4.2 Harnessing the parallelism . 26

5 Results and Conclusions 32

iii

Contents iv

5.1 MPI Results and Observations . 32

5.1.1 Observations and explanations . 33

5.2 GPU results and observations . 39

5.2.1 Observations and explanations . 39

5.3 Summary and conclusions . 41

5.4 Future work . 41

Bibliography 42

Symbols

Symbol Name and Usage

∇ Gradient operator

∇· Divergence operator

Ω Boundary of the grid

ν Viscosity of fluid

Re Reynolds Number

p Pressure

u = (u, v, w) Velocity vector

ρ Density

uε Perturbation of u around ε

ε Perturbation parameter

v

Chapter 1

Introduction

Graphical Processing Units are massively parallel processors that have the capability to solve

problems that have a large amount of parallelism in them, much faster than on a CPU. GPU’s

have become increasingly popular due to their capability to decrease the computation time

compared to the CPU. This project concerns the computation of the solution of the Navier–

Stokes equations by using the direction splitting method where the velocity and pressure

updates take the form of one dimensional linear systems[1] which can be solved using tri-

diagonal solution methods which are highly parallel and hence suitable for GPU’s.

1.1 Motivation

Moore’s so-called law1 predicts the approximate doubling of transistors in a chip every 24

months. But as the size of the transistors hits a plateau, this law will no longer hold. The

increase in power consumption of the computing core is another reason that the clock speed

has hit a plateau. Therefore, computing cores that could work in parallel were invented. The

power consumed by each core would be the same, but the total amount of time taken to do a

task would be considerably shorter than when done by a single core, depending on the task

parallelizability.

GPU’s are gaining traction especially in the field of scientific computing where the problems

being solved range from bio-informatics to the astrophysics. Though the problem type may

differ the idea behind is similar: Parallelizable code run on massively parallel computing

cores. The efficiency of the GPU depends on the amount of work given to each of the

computing cores. The main aspect that needs to be taken into account is that the algorithm

has enough amount of work that can be computed on each of the parallel computing cores.

1Moore’s law, http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html

1

http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html

2

The Navier–Stokes equations are the governing equations for most of the fluid flows. They

govern the flow of fluid in a pipe to the prediction of weather patterns. The fact that

the existence and uniqueness of the solutions to these equations is undetermined2 does not

provide us with an exact solution to work with. The non-linearities in the equation make

the computation of the solution difficult even when the problem is well defined, due to the

chaotic nature and bifurcations. As fluid flow governs most of the engineering applications

and nature as well, it becomes very important that we construct methods that are able

to approximate the exact solution with least amount of computational power and time as

possible. As the Navier–Stokes equations are non-linear, partial differential equations that

have an inherent pressure-velocity coupling, only certain algorithms that are specifically

designed to have enough parallelism can be run with high efficiency on GPU’s.

1.2 Background

Projection methods have been very popular since their introduction by Chorin[2]. The basic

idea was to solve for pressure by solving the Poisson equation with appropriate boundary

conditions. This pressure Poisson equation, derived from the decomposition of the veloc-

ity field is the main idea that is behind most of the pressure/velocity decoupling methods.

The algorithm that is used in this project comes from the method proposed by Guermond

and Minev[3]. They propose a fractional time stepping technique that applies the direction

splitting technique to both the momentum equation and the pressure correction equation.

The pressure correction equation is derived from the single perturbation of the mass conser-

vation equation by penalizing the incompressibility constraint in a negative norm induced

by the splitting[3]. This splitting produces one dimensional linear systems where the sys-

tem matrices are tridiagonal. These linear systems can be very efficiently solved on parallel

processors.

To get a higher order variant of the direction splitting method, an incremental scheme, the

rotational version as explained in [4] is used.

2Millenium Problem, http://www.claymath.org/millennium-problems/navier-stokes-equation

http://www.claymath.org/millennium-problems/navier-stokes-equation

3

1.3 Goals and Objectives

The objectives of the project were the following:

1. Identify the bottlenecks and problems, if any, in the existing MPI code.

2. Optimize the solver module of the existing MPI code.

3. Identify strategies to port the solver module and the time loop to multiple GPU’s.

4. Optimize the GPU version for memory and locality of data.

5. Compare the speedup obtained with GPU’s to the plain MPI version and the serial

version.

Chapter 2

Methodology and Ideas

The methodology of this project was constructed based on the objectives and the tools used

were also based on them. As the main objective of the project was to port the MPI code to

run on multiple GPU’s, analyzing, profiling and optimizing of the MPI code was an essential

part of the project. Profiling was necessary to identify the bottlenecks in the code, so that

if possible, the bottlenecks could be removed in the GPU version.

The ideas that are involved in the code are also explained in the following section.

2.1 Methodology

The flowchart explaining the steps involved during the process are shown in Fig 2.1.

4

5

Literature Survey

Analysis of existing code and its algorithms

Profiling and performance analysis

Optimization of the MPI code

Reasonably optimized ?

Port to GPU

Test code for various limits

Profiling and performance analysis

Report speedup and and performance improvements

Yes

No

Figure 2.1: Methodology Flow chart

6

A summary of the tools used for the different steps for the project is given below:

Documentation - Doxygen

Debugging - Allinea DDT, gdb, CUDA - GDB

Profiling - Valgrind, Allinea MAP, gprof,nvprof

Post-processing - LATEX, GNUPLOT, PARAVIEW

Figure 2.2: Summary of tools used

2.2 Ideas

The code by Minev [3] has been written to run on multiple processes thereby reducing the

time required to compute the solution. The main idea involves solving the pressure correction

equation by splitting it into one-dimensional linear systems that involve tridiagonal matrices.

This fractional time stepping is not only applied to the pressure correction equation but also

to the momentum equation, thereby reducing the computational complexity of the method.

2.2.1 Directional splitting

As the main idea is to uncouple the velocity and the pressure, the first step is to solve an

alternative form of the Navier–Stokes equation that is a O(∆t2) perturbation of the linearized

version of the Navier–Stokes equations.

The Navier–Stokes equations are given by

∂tu + (u · ∇u)− 1

Re
∆u +∇p = f , in Ω× (0, T]

∇ · u, in Ω× [0, T]

u|∂Ω = a, in ∂Ω× (0, T]

u|t=0 = u0, in Ω


(2.1)

where f is the source term, a is the boundary term and u0 is the initial condition, ∆t is the

time step and Ω = [0, Lx]× [0, Ly]× [0, Lz] which is a subset of R3.

7

Most of the incremental pressure correction schemes are semi-discrete versions of the single

perturbation of the linearized version of the above Navier–Stokes equation and can be written

as:

∂tuε −
1

Re
∆uε +∇pε = f , in Ω× (0, T], uε|∂Ω×(0,T] = a, uε|t=0 = 0

−∆t∆φε +∇ · uε, in Ω× [0, T], ∂nφε|∂Ω×(0,T] = 0

∆t∂tpε = φε −
χ

Re
∇ · uε, pε|t=0 = p0

 (2.2)

where p0 = p|t=0, the value of the pressure at the initial condition, ∆t is the perturbation

parameter, that is ε = ∆t and χ ∈ (0, 1] is an adjustable parameter. This perturbation has

shown to be stable in [5] and in [6]. Consequently, uε has shown to be a O(∆t2) perturbation

in the L2 - norm and a O(∆t3/2) perturbation in the Hilbert, H1- norm for all 0 < χ ≤ 1.

The main idea of Guermond and Minev[3, 7] was to replace the Poisson operator in the

pressure correction equation by an operator A such that the operator and the domain of

the operator D(A) satisfy the bilinear form, a(p, q) :=
∫

Ω qApdx properties of symmetricity

and the L2 norm of the element of the domain, ||∇q||2L2 ≤ a(q, q). These properties of the

operator A is necessary to ensure the regularity of pressure and to make sure that the solution

is smooth enough in the limit.

The next issue is the choice for the operator, A. Many operators exist that satisfy the

above properties. For example, the usual pressure correction equation can be recovered

by taking the operator A := −∆N , which is the Laplace operator with the homogeneous

Neumann boundary condition applied. The operator A can also be taken to be I − ∆N ,

where I is the identity operator. Guermond and Minev suggest to use the operator A :=

(1− ∂xx)(1− ∂yy)(1− ∂zz) with appropriate boundary conditions.

Now, the pressure correction equation is computed with the above operator and the momen-

tum equation is solved by using the direction splitting method of Douglas [1], which is a

second order accurate method.

The complete algorithm consists of 4 steps. First the pressure predictor, where the corrected

pressure is obtained using the perturbation pressure, φ ∀n ≥ 0 as :

p∗,n+ 1
2 = pn−

1
2 + φn−

1
2 (2.3)

and setting p−
1
2 = p0 and φ−

1
2 = 0. The second step involves the velocity update which

involves the direction splitting for the momentum equations and thereby reducing them to

one-dimensional equations.

8

ξn+1 − un

∆t
− 1

Re
∆un +∇p∗,n+ 1

2 +
3

2
(un · ∇)un − 1

2
(un−1 · ∇)un−1 = 0 , ξn+1|∂Ω = a

ηn+1 − ξn+1

∆t
− 1

2Re
∂xx(ηn+1 − un) = 0, ηn+1|x=0,Lx = a

ζn+1 − ηn+1

∆t
− 1

2Re
∂yy(ζ

n+1 − un) = 0, ζn+1|y=0,Ly = a

un+1 − ζn+1

∆t
− 1

2Re
∂zz(u

n+1 − un) = 0, un+1|z=0,Lz = a

(2.4)

The third step involves the application of the operator A to the pressure correction equation

and thereby obtaining one-dimensional equations. This is called the penalty step.

ψ − ∂xxψ = − 1

∆t
∇ · un+1, ∂ψ|x=0,Lx = 0

ϕ− ∂yyϕ = ψ, ∂yϕ|y=0,Ly = 0

φn+ 1
2 − ∂zzφn+ 1

2 = ϕ, ∂zφ
n+ 1

2 |z=0,Lz = 0

(2.5)

The last step consists of updating the pressure with the pressure increment, φn+ 1
2 .

pn+ 1
2 = pn−

1
2 + φn+ 1

2 − χ

Re
∇ ·
(1

2
(un+1 + un)

)
(2.6)

2.2.2 Solution strategies

The discretization of the equations (2.3) - (2.6) has been done using the Marker and Cell

stencils using central differences for the first and second order derivatives. The paralleliza-

tion has been done in MPI with the natural cartesian domain decomposition. The domain

decomposition induces unknowns additional to the internal unknowns. Therefore, the Schur

complement method is used to solve for all the unknowns, which take the form of tri-diagonal

linear systems after the one-dimensional linear problems in equation (2.4) and equation (2.5)

are approximated in space. It has to be noted here that the linear systems are identical

thereby allowing for a simpler solution strategy.

The algorithm allows for a lot of parallelism because each one dimensional system can be

solved independently. This allows us to create a cartesian decomposition of the whole mesh.

MPI allows for a logical cartesian decomposition of the processes, thereby allowing for each

logical process to solve for one cartesian block of unknowns, which contains its own internal

unknowns, ui and the unknowns at its interface, that are a result of the cartesian domain

decomposition, ue. Therefore a large number of systems of the form

9

(
Aii Aie

Aei Aee

)(
ui

ue

)
=

(
fi

fe

)
(2.7)

have to be solved in each time step in each of the space directions. If we consider the number

of processes in the direction d as procD, then the number of interfaces would be equal to

ne = procD + 1. Note that the interval end points are added to the interface points. Let

the number of grid points in direction d be equal to n. Then the matrix Aii are of size

(n− ne)× (n− ne) and the matrix Aee are of size ne × ne.

The two algorithms Algorithm 1 and Algorithm 2 are the two variants that are used to solve

for the unknowns. Algorithm 1 pre-computes the Schur complement on the master process

for the particular direction and sub-communicator (created through the MPI Cart create).

The local systems are solved, communicated to the master process and the Schur complement

is solved for the interface unknowns, ue. The interface unknowns are communicated back

to all the respective processes and the internal unknowns, ui are solved by all processes in

parallel.

Algorithm 1 Schur solve: Type 1

1: if (process == master proc) then
2: Pre-compute Schur complement, S = Aee −AeiA−1

ii Aie

3: End If

4: procedure Schur Solve(for d = 1,2,3)

(
Aii Aie
Aei Aee

)(
ui
ue

)
=

(
fi
fe

)
5: Solve local tri-diagonal systems, Aiixi = fi on all processes
6: if (process == master proc) then
7: Gather Aeixi from all processes in the direction d and current sub-communicator
8: Solve the tri-diagonal linear system Sue = fe −AeiA−1

ii fi
9: Scatter Aieue to all processes in the direction d and current sub-communicator

10: End If
11: Solve the tri-diagonal linear system Aiiui = fi −Aieue on all processes

(a) Communications in-
volved

(b) Processors involved
in x-solve

(c) Processors involved
in y-solve

(d) Processors involved
in z-solve

Figure 2.3: Communications required and the process topology involved [7] for Algo 1.

10

2.2.2.1 Problems with Algorithm 1

1. The schur complement is solved only on the master processes of the sub-communicators.

This creates a load imbalance as during this step, all the other processes are idle.

2. The messages to and from the master processes during this step are lengthy and there-

fore inefficient. Communication takes up a lot of time during this step.

Algorithm 2 resolves the above issues by solving systems in slices or blocks. Here each slice

has been made equal to the number of processes to facilitate the Gather operation to be

inside the same loop.

Algorithm 2 Schur solve: Type 2

1: Pre-compute Schur complement, S = Aee −AeiA−1
ii Aie on all processes

2:

3: procedure Schur Solve(for d = 1,2,3)

(
Aii Aie
Aei Aee

)(
ui
ue

)
=

(
fi
fe

)
4: for iter = 1 to procD do
5: for k = 1 to n/procD, in steps of procD do
6: Solve procD local tri-diagonal systems, Aiixi = fi,
7: Gather Aeixi from all processes on process iter,

8: End For
9: End For

10: Solve the tri-diagonal linear system Sue = fe −AeiA−1
ii fi on all processes in parallel

11: for iter = 1 to procD do
12: for k = 1 to n/procD, in steps of procD do
13: Scatter Aieue to process iter,

14: End For
15: End For
16: Solve the tri-diagonal linear systems Aiiui = fi −Aieue on all processes

The algorithm proceeds by pre-computing the Schur complements on all processes. All the

processes then solve for the local unknowns in slices and the respective slices are gathered in

the required processes in a loop. This solving of the unknowns in slices reduces the message

lengths that are sent because the gather is called in the loop as well. The interface unknowns

are then solved for in parallel by each of the processes. The interface unknowns,ue, are then

scattered to the respective processes in slices. The internal unknowns, ui, are solved for in

each of the processes in parallel.

The algorithm has the advantage of solving for the interface unknowns in parallel whereas

Algorithm 1 solves for the interface unknowns only in the master process. In Algorithm 2,

the communication message volume remains the same but the length of the messages reduce.

This can be very helpful if the available bandwidth is lower. Also, the load is more balanced

in Algorithm 2 because all the processes solve for the interface unknowns rather than just

the master processes. Therefore for large cases, Algorithm 2 proves to be faster than its

predecessor. The performance comparisons are done in Chapter 5.

11

The communications required for Algorithm 1 are shown in Fig 2.3(a). Figs 2.3(b),2.3(c),2.3(d)

show the processes that are involved in the Schur complement solves in Algorithm 1. For

Algorithm 2, all the processes are involved in the Schur complement solves. Another aspect

that should be observed is the logical process topology involved for a 3D problem and the

fact that the logical process decomposition mimics the physical problem decomposition.

If we denote N by the total number of grid points and the total number of processes to be P

and that the number of processes in each direction are equal, then in each row of processes

there are n2 = (N/P)2/3 linear systems of size N1/3 to be solved, which are solved using the

tridiagonal solver similar to Thomas algorithm which is shown in Algorithm 3.

Algorithm 3 tridiag solver(A,x,d): Thomas algorithm

1: procedure solve Ax = d, A = tridiag(ai, bi, ci) ,x =


x1

x2
...
xn

, d =


d1

d2
...
dn


2: cp(1) = c(1)/b(1)
3: dp(1) = d(1)/b(1)
4: Forward sweep:
5: for i = 2 to sizeof(diag(A))− 1 do
6: id = (b(i) - cp(i-1) * a(i))

7: cp(i) = c(i)/ id

8: dp(i) = (d(i) - dp(i-1) * a(i))/id

9: dp(n) = (d(n) - dp(n-1) * a(n))/ (b(n) - cp(n-1) * a(n))

10: x(n) = dp(n)

11: Back Substitution:
12: for i = sizeof(diag(A))− 1 to 1 do
13: x(i) = dp(i) - cp(i) * x(i + 1)

2.3 Meshing and post-processing

2.3.1 Meshing

The code by Guermond and Minev allows for two types of meshing: A uniform mesh, where

all the grid spacings are equal or a non-uniform mesh, where the grid is refined near the

boundaries, the region where the changes in the field gradients are higher. As the test case

in consideration is the Lid-driven cavity, the meshing strategy of the non-uniform grid was to

refine the grid near the x−z and y−z walls with the z wall being the moving boundary(lid).

The Marker and Cell stencil has been used. Therefore, the velocity and pressure field are

present as in Figure 2.4. The velocity fields are present on the cell faces, whereas the pressure

field is on the cell center. This prevents checker-boarding and hence is a very effective method

12

(a) Pressure field (b) x-velocity field (c) y-velocity field

Figure 2.4: Marker and Cell Stencil.

so that the central difference method can be used along with a staggered grid to satisfy the

div-stability condition. But a disadvantage of the method includes that two separate grid

coordinates need to be calculated or stored along with the mesh widths for the case of the

non-uniform mesh.

2.3.2 Post-processing

The output of the fields(u, v, w, p, ρ) are written in *.vtk format. As the code is a parallel

code, each process writes its own fields to separate files. These files have to be stitched

together to obtain the final overall field as required. As writing the file to the *.vtk format is

arbitrary, the files can be written in any format as required depending on the post-processing

software.

Depending on the size of the problem, the size of the files can get very large. Therefore, one

must be very careful while visualizing or saving the fields required, as the file writing can

considerably increase the run-time of the code. Parallel visualization software such as VisIt

might prove to be useful for very large cases when multiple time steps and all the fields are

required.

Chapter 3

MPI code and optimizations

The MPI code by Guermond and Minev was written to run on a large number of processes

and tested for upto 1024 processes for the case of the Lid-driven cavity. This chapter explains

the MPI code and the optimizations that are possible to make the code faster. Memory and

cache will be some of the important considerations. The results of the optimizations and the

performance improvements observed, if any, will be discussed in Chapter 5.

3.1 Message Passing Interface and usage

This section explains some of the basics of the Message Passing Interface and how it has

been made use of in the code so that a general idea is gained.

The Message Passing Interface is a standard that has been defined by the MPI Forum and

is used to define the syntax and semantics of the MPI library routines that is used to give

the user explicit control over the communication between different processes sharing a job.

There are many implementations of the MPI standard such as OpenMPI, MPICH, MVAPICH

which are open source and there are others which are proprietary such as Intel MPI or IBM

PE. Each of the implementations has its own advantages and disadvantages. For purposes

of this project, for the basic MPI code atleast, all MPI implementations prove to be same

because the MPI routines used are most basic. Only when we get into the GPU, we realise

which MPI implementations are more favourable as will be explained in Chapter 4.

The main usage of MPI in the code has been the creation of a logical process grid and passing

data between these processes when required. Therefore, the main MPI routines1 that have

been used are shown in Table 3.1.

1OpenMPI Documentation, https://www.open-mpi.org/doc/v1.8/

13

https://www.open-mpi.org/doc/v1.8/

14

MPI routines used

Name Brief explanation Output

MPI Init(err) Initializes the MPI environment err

MPI Comm Size(MPI Comm,size,err) Returns the size of the communicator,
MPI Comm

size , err

MPI Comm Rank(MPI Comm,rank,err) Returns the rank of the calling process
from the MPI Comm group

rank, err

MPI Cart Create(old comm,ndims,dims,

period,reorder,new comm,err)

A new communicator with the carte-
sian topology is created

new comm, err

MPI Cart Coords(old Comm,rank,

maxdims,coords,err)

Stores the coordinates of the process
given the rank in the communicator

coords, err

MPI Cart Sub(old comm,remain dims,

new comm,err)

Creates new groups from old comm

which form lower dimensional groups
new comm, err

MPI Bcast(buff,count,type,root,

MPI Comm,req,err)

Broadcasts buff from root to all pro-
cesses in MPI Comm

err

MPI Gather(sbuff,scount,stype,rbuff,

rcount,rtype,root,MPI Comm,err)

Gathers sbuff from all processes in
MPI Comm to rbuff on root

rbuff,err

MPI Scatter(sbuff,scount,stype,rbuff

,rcount,rtype,root,MPI Comm,err)

Scatters sbuff from root to rbuff on
all processes in MPI Comm

rbuff ,err

MPI Finalize(err) Ends the MPI environment err

Table 3.1: MPI routines used in the code.

As explained above, MPI Cart Create creates a cartesian topology of processes as shown in

Figure 2.3(a). The MPI Cart Sub then creates a communicator in each physical direction

which are basically lines of processes in the direction perpendicular to the direction that is

not being considered.

3.2 Modules and subroutines

The list of the modules with the important subroutines are listed below. The call graph

shown in Figure 3.1 shows the calling of the different subroutines and their dependencies.

1. PROGRAM nst: This is the main program which calls all the other modules. Input is

given by means of a data file which is read by the read my data subroutine from the

data module.

2. MODULE data: This module contains the subroutine read my data which reads the

input settings for the solver from the text data file, parses it and stores it in the

respective structs. All the reading is done by the master process i.e the process

with rank 0 from the communicator, MPI Comm World. Therefore, after reading and

storing the variables in the master process, it uses MPI to broadcast the variables to

the different processes involved as well. Therefore after control is returned from this

subroutine, all processes have the required data and variables from the input text file.

15

Figure 3.1: Call graph for the program with the all the called subroutines and modules.

16

3. MODULE mesh mod: This module creates the mesh and the coordinates in the following

subroutines:

(a) create mesh weights: This subroutine creates the mesh weights which is the

offset for calculaton of grid coordinates and stored in the mesh struct, specifically

in mesh%weights which is an array of size dim× dim.

(b) compute coords bc: This subroutine computes the coordinates of the grid points

and also the spatial step sizes of the regular and the staggered grids and stored

in mesh%h and mesh%s, respectively which are user-defined types containing the

spatial step sizes for each dim.

4. MODULE create comm: This module contains the subroutine create cart comm, which

creates the logical process grid, the lower dimensional cartesian sub-groups through

which the processes can communicate. The variable comm one d contains the cartesian

sub-groups, and the variable comm cart contains the cartesian communicators. The

subroutine also calculates the coordinates of the process (using MPI Cart Coords(...))

in a given group based on its rank in the group and that is stored in the variable

coord cart.

5. MODULE assembling: This module contains subroutines that assembles the tridiagonal

matrices and some subroutines that perform operations such as the divergence and the

gradient on the required fields.

(a) assemble vel1: This subroutine assembles the velocity matrix for the velocity

field when the derivative is in the direction of the field itself. Hence the subroutine

uses the regular grid spatial step, mesh%h. The Reynolds number Re and the

viscosity ν are also taken into consideration. The velocity matrix, mat vel is

an array of size dim× dim, where the assemble vel1 updates the mat vel(i,i)

entries for i = 1 to dim. Each of the entries of the mat vel is a block matrix

of the form of the matrix in Equation (2.7). The Aii matrix contains the matrix

entries referring to the internal grid points and is a tri-diagonal matrix, the matrix

Aee contains the entries corresponding to the unknowns on the interfaces of the

processes which are present due to the domain decomposition.

(b) assemble vel2: This subroutine updates the matrices of mat vel(i,j) when

i 6= j and works on the staggered grid as required by the MAC stencil and other

aspects are similar to that of the previous subroutine. The Equation (2.4) shows

the linear systems of the matrices that are being assembled in the subroutines,

assemble vel1 and assemble vel2.

(c) assemble press: This subroutine assembles the pressure matrix and makes use

of both the staggered and the regular spatial step size. The Equation (2.5) shows

the linear systems of the matrices that are being assembled in the subroutines,

assemble press.

17

(d) assemble rho: This subroutine assembles the density matrix, which is also a block

matrix as before.

(e) bcs: This subroutine is used inside the time stepping loop to update the boundary

conditions for the linear systems as shown in Equation (2.4) and Equation (2.5)

after solving one step and reordering the fields as required.

(f) grad: This subroutine effectively computes the gradient of the pressure field in the

mesh%current dir direction along with some correction to the boundary terms.

It effectively outputs the rhs as required by the first equation in Equation (2.4)

along with the subroutine div.

(g) div: This subroutine computes the divergence of the velocity field as shown in

Equation (2.4).

(h) advection: This subroutine is called only if the non-linear part of the NS equa-

tions has been set to be computed in the input data settings. It computes the

non-linear advection part of Equation (2.4). Some part of the required boundary

condition is added in this subroutine and the other part is added in the Schur

complement computation subroutine.

(i) predictor: This subroutine effectively computes the Laplacian of the velocity

field by first computing the diffusion operator and then computing the Laplacian

as a series of matrix vector products.

6. MODULE solutions: This module contains some subroutines that compute the exact

solution as a function of final time to compute the errors in the solution. Similar to

the exact sol vel subroutine as explained there are also subroutines that compute

the pressure exact solution (exact sol press) and for the density(exact sol rho).

(a) compute source: This subroutine computes the source term in the Equation (2.4).

It adds the source term part to the rhs only if the source term has been set in

the input setting in the data file.

(b) exact sol vel: This subroutine calculates the coordinates as required by using

the subroutines in the toolbox module and updates the output vector with the

exact solution at the final time. This subroutine is also used to compute the initial

solution if the restart has not been set or is not present.

7. MODULE create Schur: This module contains subroutines that compute for the Schur

complement and also solve for it.

(a) compute Schur: This subroutine computes the Schur complement matrix as shown

in Algorithm 1 given the main matrix. This Schur complement matrix is com-

puted by all processes. As an inverse is required, this is computed using the

tri diag solution subroutine of the tri diag solve mod module. The Schur

complement matrix is a tri-diagonal matrix.

18

(b) solve schur1: This subroutine is the Schur complement solver that solves for the

unknowns using Algorithm 1. The Schur complement part of the solution is done

only on the master process of the particular subgroup of the process grid. The

steps involved are explained in Algorithm 1.

(c) solve schur2: This subroutine is the Schur complement solver that solves for the

unknowns using Algorithm 2. The Schur complement part of the solution is done

on all processes of the process grid. The steps involved are explained in Algorithm

2.

8. MODULE toolbox: This module contains some useful subroutines such as reordering,

transposing and other similar routines that are used in most of the other modules.

(a) OneDtoOneD: This subroutine reorders the array as required by the next step and

the direction that is input to it and outputs the offset that the array has to be

operated on.

(b) OneDtoND: This subroutine outputs the offsets in all three dimensions based on

the current and the next directions.

(c) reorder: This subroutine is basically a transposition subroutine. In 2D, it effec-

tively transposes the 1D array given to it that has been unrolled. In 3D, it does

the transpose for all the planes perpendicular to the solution direction.

9. MODULE inout mod: This module contains the subroutines that are used to read back

(restart in) the restart files and also write (restart out) the restart files. It also

contains the (plane out) subroutine that writes the solution of the required points to

check the solution for accuracy and stability.

10. vtk viz: This subroutine contains the create vtk file subroutine that writes the

*.vtk format file of the scalar and the vector fields (u, v, w, p, ρ) that can be read by

Paraview for visualization.

The complete algorithm the code executes is

19

Algorithm 4 PROGRAM nst, The Navier–Stokes solver using MPI

1: procedure Create mesh and domain decomposition
2: Read the mesh details from input file: CALL read my data(mesh)

3: Create Cartesian decomposition of the process grid: CALL create comm(...)

4: procedure Assemble matrices
5: for i = 1 to dim do
6: Assemble pressure matrix, CALL assemble press(...)

7: Assemble density matrix, CALL assemble rho(...)

8: Compute Schur complement of pressure and density matrices, CALL

compute Schur(...)

9: Assemble velocity matrices, CALL assemble vel1(...) and CALL

assemble vel2(...)

10: Compute Schur complement of velocity matrices, CALL compute Schur(...)

11: procedure Allocate memory and set initial solution
12: Allocate memory for pressure, velocity and density fields
13: if restart in==yes then
14: Load the fields from restart file, CALL restart in(...)

15: Compute the exact solution at time, t = 0 and update the fields and rhs.

16: procedure Time stepping
17: while t<tmax do
18: procedure Solve for velocity fields
19: for j = 1 to dim do
20: if source==yes then
21: Update the rhs with the source data, CALL compute source(...)

22: Compute gradient, CALL grad(...)

23: if advection==yes then
24: Update the rhs with the advection data, CALL advection(...)

25: Update the rhs with CALL predictor(...)

26: for i = 1 to dim do
27: Transpose the rhs, to solve the linear system, CALL reorder(...)

28: Add the boundary conditions, CALL bcs(...)

29: Solve the linear system for (dir,dir) = (i,j), solve schur2(...)

30: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL bcs end(...)

31: procedure Solve for pressure field
32: Compute divergence on the velocity fields, CALL div(...)

33: for i = 1 to dim do
34: Solve the linear system, solve schur2(...)

35: Transpose the rhs, for the next direction, CALL reorder(...)

36: Update the pressure fields for next time step and the corrected pressure as
well.

20

37: if rho==yes then
38: procedure Solve for density field
39: if source rho==yes then
40: Update the rhs with the source data, CALL compute source rho(...)

41: if advection rho==yes then
42: Update the rhs with the advection data, CALL advection rho(...)

43: Update the rhs with CALL predictor rho(...)

44: for i = 1 to dim do
45: Add the boundary conditions, CALL bcs rho(...)

46: Solve the linear system, solve schur2(...)

47: Transpose the rhs, to solve the linear system, CALL reorder(...)

48: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL bcs rho end(...)

49: Store results (field data at a certain time) if needed for post-processing, CALL

plane out(...)

50: End of time loop
51: procedure Store results to vtk file and terminate program
52: Write the required *.vtk files, CALL create vtk file(...)

53: if restart out==yes then
54: Write the fields to a restart file, CALL restart out(...)

55: Terminate Program

3.3 Optimizations

This section explains the possible optimizations. The results are presented in Chapter 5.

3.3.1 Memory Optimizations

Memory optimizations include optimal use of the cache, reducing the communication and

last but not least taking care of the memory access while operating on the arrays. Memory

optimizations become important when the problem size becomes large. The length of the

arrays may go up to a few billion in each of the processes. Sending these arrays, transposing

them and performing operations on them can very easily be sub-optimal if done without

care.

Some optimizations include:

1. Allocate memory when required and deallocate after the use in the subroutine. This

prevents the overflow of memory.

2. If an array has operations inside a loop, allocate the array before the start of the

loop. Preallocating the array means that the array does not have to be allocated and

deallocated every time within the loop.

21

3. Utilizing the cache effectively is one of the most important aspects of optimizations.

Most processes have a L1 cache which is a small, high speed memory. A larger L2 cache

which is slightly slower and sometimes L3 and L4 caches depending on the processes

and the main DRAM memory. Utilizing the caches effectively can be the difference

between a fast code and a slow one. To effectively use the cache, one has to recognize

the arrays and variables that are used most frequently in the code and make sure that

they are if possible, pinned to the caches. This makes sure that they are in the fast

memory and accessible whenever required with as less of a delay as possible. Most of

the above is usually done by the compiler fully when set to the highest optimization

possible, -O3. Some other user possible optimizations include:

(a) Loop Interchanges: Interchanging the loops changes the memory access patterns

and therefore allows a larger contiguous chunk of an array to be loaded to the

cache, the faster memory. This improves register usage but this is possible only if

the execution order of the nested loops are not important.

(b) Loop fusion: Fusing loops that operate on same sized array into one loop, allows

for multiple arrays to be operated on simultaneously thereby reducing the need

to update the arrays separately. This is an example of increased instruction level

parallelism.

(c) Loop tiling: This increases the depth of the loops by adding additional loops to

the inner loops. This improves data locality and the data reuse in the cache, by

loading a chunk of the locally iterated array and thereby improving the access and

allowing for reuse of data.

(d) Pre-fetching of data: Pre-fetching of data before the computation can in a sense

overlap the access and computation part of the subroutine thereby increasing the

efficiency of the code. Pre-fetching is a pretty complex process and is usually

handled by the compiler.

4. Another important aspect that needs to be considered is the data layout. These op-

timizations are called data layout optimizations. They are intended fo avoid cache

conflict misses and they improve the spatial locality of the code. Array padding and

merging of arrays are some of the commonly used techniques in these optimizations.

Most of the above optimizations are performed very effectively by good compilers. The

optimizations that were applied explicitly include the allocation and deallocation of arrays

and vectorization. Vectorization improves the data access patterns and allows for efficient

use of caches. The results of the performance for different vectorization lengths and problem

sizes are explained in Chapter 5.

Chapter 4

GPU code and optimizations

This chapter explains the different aspects that need to be considered before porting the

code to multiple GPU’s. Finally, the GPU algorithm and its intricacies are explained. This

chapter is also meant to be a documentation for the GPU code along with the thought process

that went into the decision making that ensued.

4.1 Graphical Processing Units and programming for general

purpose

Graphical Processing Units (GPU’s) have been around since the 1990’s, popularized by

NVIDIA1. Increasing power consumption with the high clock speeds is an issue due to over-

heating of the chips. Moore’s law will sustain only for so long before we will have to adapt

to other technologies to make our codes faster and more efficient.

Another aspect is the size of the silicon die is also reaching the limit and hence there is a

definite stall expected in Moore’s law in the future. NVIDIA and AMD are the two main com-

panies that manufacture GPU’s. NVIDIA’s CUDA(Compute Unified Device Architecture)

framework is presently at the forefront with the other open source programming frameworks

catching up such as OpenCL and OpenACC. As most of the accelerators in most of the

supercomputing clusters are NVIDIA GPU’s, this project will focus on programming with

the CUDA framework. As the code by Minev was a FORTRAN code, the GPU version has

been written with CUDA Fortran which is a proprietary extension to CUDA developed by

PGI.

1GPU, http://www.nvidia.com/object/IO 20020111 5424.html

22

http://www.nvidia.com/object/IO_20020111_5424.html

23

4.1.1 Programming model

The CUDA programming model consists of execution of functions called kernels that are

executed by all the threads being called. The main idea of GPU computing is the execution

of multiple threads which makes use of the parallelism in the code. Therefore it is important

to make sure that the kernel being executed has enough parallelism.

A kernel can be called from the host or the device (called dynamic parallelism) and the

number of threads is specified using the chevron syntax, <<<...>>> . The arguments will

be explained later. In CUDA Fortran, the kernel is made to be executed from the host

by giving it the attribute global. The other attributes that can be given are host and

device. Each thread that is executing the kernel has its own ID in built-in threadIdx

variable. As will be explained later, the threadIdx is a 3 component vector corresponding

to the three dimensions that the threads can be created in, logically.

4.1.2 Threads and Blocks

Threads and blocks are an important aspect of general purpose GPU programming, not only

because their execution is the most important part of the kernel but because care has to be

taken to make sure that they are optimally configured. Threads are the most basic level of

execution of instructions. Threads are organized into blocks and blocks are organized into

grids. Logically speaking, the threads and blocks can be 3-dimensional. The system that this

project is based on, use the NVIDIA Tesla P100 cards, at the CSCS cluster, after their recent

upgrade. It has a compute capability of 6.02. The compute capability restricts some features

based on the hardware. For example, from compute capability 3.0 upwards the maximum

number of threads in a block was increased to 1024 from 512.

A derived data type in the standard is dim3. The arguments the kernel is launched with is

specified by using these dim3 type variables that hold the block and thread dimensions in

each direction. Figure 4.1 shows the arrangement of thread and blocks in 2D3.

A block can have a maximum of 1024 threads and it is recommended to have the number of

threads in a block to be a multiple of 32 as 32 threads make up a warp, which a collection of

threads. The maximum number of blocks in one direction is 65536. Therefore the maximum

number of blocks possible in a device of compute capability 3.5 is 65536 × 65536 × 65536.

2Product Specs,https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf

3Threads and blocks, https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

24

Figure 4.1: Thread, block and grid arrangement

4.1.3 Memory handling

GPU memory is one of the most important aspects of GPU programming because in most

cases that have enough parallelism to be executed on the GPU, the memory is the bottleneck.

Especially when there are multiple GPU’s involved, it becomes very important to handle the

memory very carefully and keep the memory as local as possible. The different memory

aspects in the GPU are explained below. The memory hierarchy is as as shown in Figure

4.24.

4.1.3.1 Global Memory

This is the largest memory available on a GPU. It is available globally to all the threads and

depending on the hardware and the GPU can go upto a few GB’s. The P100 has a global

memory of 16GB but not all of it may be available. Error correction usually occupies some

memory. As the memory is large the transfer speed is lower. When an attribute of device is

given to a variable, it is stored in the global memory. Copies to and from the host (CPU) are

generally done using the cudamemcpy() function, either synchronously or asynchronously.

4Threads and blocks, https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

25

Figure 4.2: Memory with the threads and blocks

4.1.3.2 Shared Memory

All the threads in a thread block share a fast memory called the shared memory which is

small and short lived but much faster. In Tesla P100 the shared memory can be upto 64KB

per SM. If possible, the shared memory must be taken advantage of.

4.1.3.3 Pinned Memory

On the host the memory allocated usually resides in the pageable memory. But this memory

may be overwritten during the various memory fetching phases. If one knows that a variable

is required for most of the instructions and fetching phases, one can make the variable reside

in a page-locked memory which is a memory that resides on the host and is beneficial for

frequent transfers to and from the host.

26

4.1.3.4 Unified Memory

Unified memory or as NVIDIA calls it Unified Virtual Addressing(UVA)5 allows for a single

address space for both the memory on the host and the device to reside on. This feature

is available in devices that are compute capability 2.0 or higher. This feature simplifies the

memory handling and movement of data from and to the host from the device.

Specifically for the case when there are multiple devices and CPU’s in working. it becomes

much simpler the create a context between one rank(task) of a CPU and a GPU on the

node and when the transfers are required from one GPU to the other, one transfers data

from one MPI rank to another using the MPI communication standards. This simplifies the

communication and allows for easier programming.

New features and technologies such as GPU Direct and some CUDA-aware MPI’s such and

OpenMPI, MPICH2 and MVAPICH2 MPI standards simplify the programmers efforts and

faster communications by allowing transfers from one GPU to another directly. This is

extremely important when all the kernels exist and run on the GPU and the CPU is just a

context establisher. Unfortunately, the cluster at Max- Planck, Garching does not yet have

MPI standard that are capable of doing this.

4.2 Harnessing the parallelism

The programming models in a MPI code and a GPU are different. Hence care must be

taken to ensure that the efficiency of the code remains high when porting the code from

MPI. As the GPU model consists of millions of threads working at once, an algorithm will be

efficient only if it has enough amount of parallelism. Once the algorithm has been verified for

scalability to the multiple threads, it becomes important that one is able to transform and

make use of the available hardware and software on the GPU’s to harness the parallelism in

the algorithm. One of the techniques that is necessary to harness the parallelism is called

tiling. It is the idea of computing the available sections in tiles whose sizes can vary from

8× 8 to much larger sizes as well.

The main algorithm under consideration here is the Thomas algorithm for solving the linear

systems. It allows for a maximum of n linear systems to be solved at once in a 2D problem

of size n× n, which is not enough to harness the parallelism of the GPU. Hence solving 2D

problems will not be very efficient on the GPU’s. But for the case of 3D, where the problems

are of size n × n × n, we get to solve n2 systems, hence for practically sized 3D problems

GPU’s can be effective. For the GPU, the algorithm changes slightly from Algorithm 4 and

is given in Algorithm 5.

5Unified Memory, https://docs.nvidia.com/cuda/cuda-c-programming-guide/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

27

Algorithm 5 PROGRAM nst, The Navier–Stokes solver using MPI and GPU

1: procedure Initializations on CPU’s
2: procedure Create mesh and domain decomposition
3: Read the mesh details from input file: CALL read my data(mesh)

4: Create Cartesian decomposition of the processor grid: CALL create comm(...)

5: procedure Assemble matrices
6: for i = 1 to dim do
7: Assemble pressure matrix, CALL assemble press(...)

8: Assemble density matrix, CALL assemble rho(...)

9: Compute Schur complement and pressure and density matrices, CALL

compute schur(...)

10: Assemble velocity matrices, CALL assemble vel1(...) and CALL

assemble vel2(...)

11: Compute Schur complement of velocity matrices, CALL compute schur(...)

12: procedure Allocate memory and set initial solution
13: Allocate memory for pressure, velocity and density fields
14: if restart in==yes then
15: Load the fields from restart file, CALL restart in(...)

16: Compute the exact solution at time, t = 0 and update the fields and rhs.

17: procedure Enable Peer to peer transfers and establish contexts
18: for i = 1 to max rank do
19: Get node number and name, get number of GPU’s on each node
20: if same node==yes then
21: Check compute capability of device, cudaGetDeviceProperties(...)
22: if compute capability .geq. 2.0 then
23: Enable Peer to Peer access, cudaDeviceEnablePeeraccess(device(j),

device(k))

24: if first time==yes then
25: Get rank of calling CPU process, MPI Comm rank(comm,rank,ierr)

26: Get node number and name, MPI Get Processor name(comm,ierr)

27: Store names in the array host names.
28: Broadcast the node name of the process to all processes ,

MPI Bcast(host names(rank, ...))

29: Sort the names according to the node names
30: for n = 1 to max procs do
31: if host names(n) == host names(n-1) then ! implies on the same node.
32: color = color + 1

33: if host name .neq. host names(n) then
34: break

35: Split the communicator based on the color assigned ,
MPI Comm split(comm, color, ..., newC omm,...)

36: Get the new ranks in the new communicator, MPI Comm rank(newComm,

myrank,ierr)

37: Set the device based on the rank and establish the context,
cudaSetDevice(myrank)

28

38: procedure Time stepping(Solved on the GPU)
39: while t<tmax do
40: procedure Solve for velocity fields
41: for j = 1 to dim do
42: if source==yes then
43: Update the rhs with the source data, CALL cu compute source(...)

44: Compute gradient, CALL cu grad(...)

45: if advection==yes then
46: Update the rhs with the advection data, CALL cu advection(...)

47: Update the rhs with CALL cu predictor(...)

48: for i = 1 to dim do
49: Transpose the rhs, to solve the linear system, CALL cu reorder(...)

50: Add the boundary conditions, CALL cu bcs(...)

51: Solve the linear system for (dir,dir) = (i,j), CALL

cu solve schur2(...)

52: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL cu bcs end(...)

53: procedure Solve for pressure field
54: Compute divergence on the velocity fields, CALL cu div(...)

55: for i = 1 to dim do
56: Solve the linear system, cu solve schur2(...)

57: Transpose the rhs, for the next direction, CALL cu reorder(...)

58: Update the pressure fields for next time step and the corrected pressure as
well.

59: if rho==yes then
60: procedure Solve for density field
61: if source rho==yes then
62: Update the rhs with the source data, CALL

cu compute source rho(...)

63: if advection rho==yes then
64: Update the rhs with the advection data, CALL cu advection rho(...)

65: Update the rhs with CALL cu predictor rho(...)

66: for i = 1 to dim do
67: Add the boundary conditions, CALL cu bcs rho(...)

68: Solve the linear system, cu solve schur2(...)

69: Transpose the rhs, to solve the linear system, CALL cu reorder(...)

70: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL cu bcs rho end(...)

71: End of time loop
72: procedure Store results to vtk file and terminate program
73: Write the required *.vtk files, CALL create vtk file(...)

74: if restart out==yes then
75: Write the fields to a restart file, CALL restart out(...)

76: Terminate Program

NVIDIA recommends that the MPI ranks to GPU ratio be equal to 1:1 and hence this ratio

has been maintained in this code. Algorithm 5 is the general algorithm for clusters with

more than one GPU per node and with GPU’s on multiple nodes being used. The cluster

29

at CSCS had one NVIDIA Tesla P100 per node and hence the association of a GPU to a

MPI rank is not necessary. To simplify matters further the only the tridiagonal systems were

solved on the GPU and the arrays were transferred back and forth from the GPU to the

host. Therefore the simplified version of the algorithm above was used which is as given in

Algorithm 6.

Algorithm 6 PROGRAM nst, The Navier–Stokes solver using MPI and GPU(no association)

1: procedure Initializations on CPU’s
2: procedure Create mesh and domain decomposition
3: Read the mesh details from input file: CALL read my data(mesh)

4: Create Cartesian decomposition of the processor grid: CALL create comm(...)

5: procedure Assemble matrices
6: for i = 1 to dim do
7: Assemble pressure matrix, CALL assemble press(...)

8: Assemble density matrix, CALL assemble rho(...)

9: Compute Schur complement and pressure and density matrices, CALL

compute schur(...)

10: Assemble velocity matrices, CALL assemble vel1(...) and CALL

assemble vel2(...)

11: Compute Schur complement of velocity matrices, CALL compute schur(...)

12: procedure Allocate memory and set initial solution
13: Allocate memory for pressure, velocity and density fields
14: if restart in==yes then
15: Load the fields from restart file, CALL restart in(...)

16: Compute the exact solution at time, t = 0 and update the fields and rhs.

17: procedure Time stepping
18: while t<tmax do
19: procedure Solve for velocity fields
20: for j = 1 to dim do
21: if source==yes then
22: Update the rhs with the source data, CALL compute source(...)

23: Compute gradient, CALL grad(...)

24: if advection==yes then
25: Update the rhs with the advection data, CALL advection(...)

26: Update the rhs with CALL predictor(...)

27: for i = 1 to dim do
28: Transpose the rhs, to solve the linear system, CALL reorder(...)

29: Add the boundary conditions, CALL bcs(...)

30: Transfer the arrays to the GPU
31: Do the first solve on the GPU to compute the local schur rhs values
32: Copy the local schur rhs values to the host
33: Gather the local schur values on the master process
34: Solve for the interface unknowns on the master process.
35: Scatter the scaled interface unknowns to all the host processes and

transfer them to the GPU’s
36: Do the final solve on the GPU’s
37: Copy back the internal unknowns to the host.

30

38: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL bcs end(...)

39: procedure Solve for pressure field
40: Compute divergence on the velocity fields, CALL div(...)

41: for i = 1 to dim do
42: Transfer the arrays to the GPU
43: Do the first solve on the GPU to compute the local schur rhs values
44: Copy the local schur rhs values to the host
45: Gather the local schur values on the master process
46: Solve for the interface unknowns on the master process.
47: Scatter the scaled interface unknowns to all the host processes and transfer

them to the GPU’s
48: Do the final solve on the GPU’s
49: Copy back the internal unknowns to the host.
50: Transpose the rhs, for the next direction, CALL reorder(...)

51: Update the pressure fields for next time step and the corrected pressure as
well.

52: if rho==yes then
53: procedure Solve for density field
54: if source rho==yes then
55: Update the rhs with the source data, CALL compute source rho(...)

56: if advection rho==yes then
57: Update the rhs with the advection data, CALL advection rho(...)

58: Update the rhs with CALL predictor rho(...)

59: for i = 1 to dim do
60: Add the boundary conditions, CALL bcs rho(...)

61: Transfer the arrays to the GPU
62: Do the first solve on the GPU to compute the local schur rhs values
63: Copy the local schur rhs values to the host
64: Gather the local schur values on the master process
65: Solve for the interface unknowns on the master process.
66: Scatter the scaled interface unknowns to all the host processes and

transfer them to the GPU’s
67: Do the final solve on the GPU’s
68: Copy back the internal unknowns to the host.
69: Transpose the rhs, to solve the linear system, CALL reorder(...)

70: Recover the solution and update the fields for next time step computations
and also apply boundary conditions, CALL bcs rho end(...)

71: End of time loop
72: procedure Store results to vtk file and terminate program
73: Write the required *.vtk files, CALL create vtk file(...)

74: if restart out==yes then
75: Write the fields to a restart file, CALL restart out(...)

76: Terminate Program

31

The detailed solution algorithm for the GPU is as given in Algorithm 7

Algorithm 7 GPU solve

1: procedure gpu tri-diagonal solver
2: Allocate required device memory from host
3: procedure Transfer data to the GPU
4: Copy the tri-diagonal matrices to the device memory
5: Copy the rhs vector to the device with the required data layout

6: Launch the GPU solver with number of threads equal to nb arrows

7: procedure solve
8: Calculate the thread index
9: Solve the nb arrows tridiagonal linear systems on nb arrows threads using Algo-

rithm 3
10: Transfer the arrays back to the host
11: Gather the local schur rhs values on the respective master processes.
12: Solve for the local interface unknowns on the host master processes.
13: Scatter the calculated scaled interface unknowns back to the respective processes
14: Transfer the scaled values to the GPU’s.
15: Launch the GPU solver with number of threads equal to nb arrows

16: procedure solve
17: Calculate the thread index
18: Solve the nb arrows tridiagonal linear systems on nb arrows threads using Algo-

rithm 3
19: Transfer the arrays back to the host.

Chapter 5

Results and Conclusions

5.1 MPI Results and Observations

The results presented here show the timings for the various versions of the MPI code. The

code has been run for different process topologies, For details of correctness of the code and

the values of the solution fields, refer to [7]. The different versions of the code include:

1. MPI code with solution algorithm set to Algorithm 1.

2. MPI code with solution algorithm set to Algorithm 2.

3. MPI code with vectorization (multiple tri-diagonal solutions using multiple threads)

and Algorithm 2.

Referring to Table 5.1, grid size refers to the total number of grid points in the problem

considering all the 3 directions. All simulations performed are for 3D cases. The process

topology explains the total number of nodes and the number of tasks on each node. The

vect length is the length of the vectorization, which is nothing but the length of the unrolled

inner loop.

The First solve time refers to the first tri-diagonal solution as in step 5 for Algorithm 1 or

steps 3-8 for Algorithm 2. The gather refers to the MPI Gather. The schur solve refers to the

tri-diagonal solution of the schur complement. The scatter refers to the MPI Scatter and the

Final solve refers to the final tri-diagonal solution. The Overall time is the complete CPU

time which includes the run-time of the whole code including the writing of the visualization

files. The number of grid points in each direction can be calculated by taking the cube root

of the grid size. For simplicity, the number of grid points and the number of processes in

each direction are equal. But, this is not necessary. The total number of points in each

logical process can be calculated by dividing the grid size by the total number of tasks. For

32

33

example, if the grid size is 0.512 × 106, then the number of grid points in each direction is
3
√

0.512× 106 = 80 and the total number of grid points in each process is 0.512 × 106/8 =

64000. For higher Reynolds numbers the time step needs to smaller. The number of time

steps taken here was equal to 1000.

The hardware used for the results that follow are from the CSCS Supercomputing cluster at

Lugano, Switzerland. They use the XC50 Intel Haswell 12-code nodes with each node having

a NVIDIA Tesla P100 GPU.

5.1.1 Observations and explanations

The following observations can be made from the timings shown in Table 5.1.

1. The solution with Algorithm 1 is less efficient than the solution with Algorithm 2. For

very large cases, this is evident. Using vectorization improves the efficiency further by

allowing multiple threads to work on multiple data with the same instructions. Though

the compiler performs some vectorization, in some cases where there is a secondary

function call within the loop, the compiler does not unroll the loop. Hence explicitly

instructing the vectorization of these loops can increase the efficiency quite a lot.

2. The main improvements between Algorithm 1 and 2 is the difference in communication

times. The time taken for Algorithm 2 for the MPI Gather is considerably smaller and

the time taken for MPI Scatter is almost negligible compared to that for Algorithm 1.

3. It is observed that the tri-diagonal solution times remain almost the same for both the

Algorithms. When vectorization is applied, the tri-diagonal solution time reduces.

4. For the cases when the total number of grid points in a process are the same but the

total number of processes vary, for example the cases when grid sizes are 262.144 ×
106 and 2097.152 × 106, the tri-diagonal solution times remain almost equal, but the

communication times for the gather and scatter increase due to the usage of more

processes.

5. Due to the reduction in message length, there is a improvement in the communication

timings as can be confirmed from Figures 5.2(a) and 5.2(b).

6. The Schur solve step takes much less time than the first and the final solves because

the size of the matrix and the unknowns are much smaller than for the other solves.

7. Some comparisons are done in the table. The improvements, shown in the brackets are

in form of a ratio with respect to the original Minev algorithm, Algorithm 1.

34

8. For cases where each rank has to solve a large number of unknowns (greater than

4 million), without vectorization the Algorithm 2 is slower than Algorithm 1. This

may be attributed to the serialization of the message sending frequencies along with

the stalling of the message length sizes. Therefore, for larger cases vectorization is

extremely important for efficiency.

35

T
a
b
l
e
5
.1
:

C
o
m

p
a
ri

so
n

o
f

M
P

I
ve

rs
io

n
ti

m
in

g
s

P
a
ra

m
et

er
s

T
im

e
(s

)

G
ri

d
si

ze
(×

10
6
)

P
ro

ce
ss

T
o
p

ol
og

y
(n

o
d

es
)
×

(t
a
sk

s/
n

o
d

e)
V

ec
t

le
n

gt
h

A
lg

or
it

h
m

F
ir

st
so

lv
e

G
at

h
er

S
ch

u
r

so
lv

e
S

ca
tt

er
F

in
al

so
lv

e
O

ve
ra

ll

80
3

=
0
.5

1
2

1
×

8
=

8
0

1
13

4
2.

5
2.

5
14

10
9

80
3

=
0
.5

1
2

1
×

8
=

8
0

2
17

0.
8(

5x
)

2.
4

0.
1(

25
x
)

17
.9

68
(1

.6
x
)

80
3

=
0
.5

1
2

1
×

8
=

8
8

2
5(

2.
6x

)
0.

9(
4.

4x
)

0.
5(

5x
)

0.
1(

25
x
)

6.
3(

2.
2x

)
43

(2
.5

x
)

16
03

=
4.

09
6

1
×

8
=

8
0

1
98

36
10

10
10

7
97

5

16
03

=
4.

09
6

1
×

8
=

8
0

2
11

6
5.

8(
6.

2x
)

9.
7

0.
4(

25
x
)

12
7

66
1(

1.
5x

)

16
03

=
4.

09
6

1
×

8
=

8
8

2
47

(2
x
)

6.
4(

5.
6x

)
2.

2(
4.

5x
)

0.
5(

25
x
)

57
.1

(1
.8

x
)

52
1(

1.
9x

)

32
03

=
32

.7
6
8

4
×

1
6

=
64

0
1

10
2

12
9

15
11

9
11

0
99

2

32
03

=
32

.7
6
8

4
×

1
6

=
64

0
2

11
3

14
(9

.2
x
)

5.
6(

2.
6x

)
1.

8(
66

x
)

12
1

54
8(

1.
8x

)

32
03

=
32

.7
6
8

4
×

1
6

=
64

8
2

46
(2

.2
x
)

13
(1

0x
)

1.
8(

10
.7

x
)

1.
8(

66
x
)

60
(1

.8
x
)

41
0(

2.
4x

)

64
03

=
26

2
.1

44
4
×

1
6

=
64

0
1

76
7

10
32

63
85

8
84

7
91

38

64
03

=
26

2
.1

44
4
×

1
6

=
64

0
2

78
6

97
8

16
.1

(4
x
)

9.
1(

94
x
)

87
5

93
36

(0
.9

7x
)

64
03

=
26

2
.1

44
4
×

1
6

=
64

8
2

39
4(

1.
95

x
)

28
3(

3.
6x

)
5.

8(
10

.8
x
)

6.
3(

13
6x

)
46

3(
1.

8x
)

43
38

(2
x
)

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

0
1

79
0

10
51

10
3

10
72

87
5

95
76

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

0
2

78
6

10
85

11
.1

(9
.3

x
)

19
.0

(5
6x

)
87

2
94

82

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

8
2

43
9(

1.
8x

)
33

8(
3.

1x
)

4.
5(

23
x
)

15
.6

(6
9x

)
48

9(
1.

8x
)

37
08

(2
.6

x
)

36

5
.5 6

6
.5 7

7
.5 8

8
.5 9

9.
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

·104

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpunprocs = 8

nprocs = 8

nprocs = 64

nprocs = 64

nprocs = 512

Figure 5.1: Overall timings for different grid sizes

37

5.
5 6

6.
5 7

7.
5 8

8
.5 9

9
.5

−100

0

100

200

300

400

500

600

700

800

900

1,000

1,100

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpu

np = 8

np = 8

np = 64

np = 64

np = 512

(a) Gather timings

5.
5 6

6.
5 7

7.
5 8

8
.5 9

9
.5

−100

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpu

np = 8

np = 8

np = 64

np = 64

np = 512

(b) Scatter timings

Figure 5.2: Communication timings for different grid sizes

38

5
.5 6

6
.5 7

7.
5 8

8.
5 9

9.
5

0

100

200

300

400

500

600

700

800

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpu

np = 8

np = 8

np = 64

np = 64

np = 512

(a) First solve timings

5
.5 6

6
.5 7

7.
5 8

8.
5 9

9.
5

0

10

20

30

40

50

60

70

80

90

100

110

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpu

np = 8

np = 8

np = 64

np = 64

np = 512

(b) Schur solve timings

5
.5 6

6
.5 7

7.
5 8

8.
5 9

9.
5

0

100

200

300

400

500

600

700

800

900

log(Grid size)

T
im

e
in

se
c

solve schur1
solve schur2

solve schur2 with Vect enabled
gpu

np = 8

np = 8

np = 64

np = 64

np = 512

(c) Final solve timings

Figure 5.3: Tri-diagonal solution timings for different grid sizes

39

5.2 GPU results and observations

The results for the multiple GPU’s has been shown below. Some observations and com-

parisons with respect to the optimized MPI code and the original MPI code has been also

shown. The timings for various parts of the solution are also tabulated to understand the

improvements of the solution obtained through the GPU.

5.2.1 Observations and explanations

1. It can be observed that the tridiagonal solution timings are considerably reduced when

the code is run on GPU’s. A speedup of more than 3 times is observed for large cases.

2. As the current GPU code uses Algorithm 1, the communication times are the same as

that of the MPI Alg 1 version.

3. The memory transfer timings are included in the solution timings, First solve and Final

solve itself. Therefore the timings are indicative of memory transfer to and from the

GPU and the computation of the solution on the GPU.

4. The Vectorization vector length here has been set to 16 as only the generic transpose

uses the vectorization and therefore this reduces the overall time and not any of the

other timings.

5. The GPU code is not as fast as the MPI vectorized version even though the first and

final solves are faster because the communication timings between the different ranks

are still inefficient compared to the MPI vectorized version.

6. The Schur solve step for the GPU code is also similar to that of the MPI Alg 1 because

the schur solve is done on the CPU and not on the GPU in this case.

40

T
a
b
l
e
5
.2
:

C
o
m

p
a
ri

so
n

o
f

ti
m

in
g
s

w
it

h
G

P
U

ve
rs

io
n

P
a
ra

m
et

er
s

T
im

e
(s

)

G
ri

d
si

ze
(×

10
6
)

P
ro

ce
ss

T
o
p

ol
og

y
(n

o
d

es
)
×

(t
a
sk

s/
n

o
d

e)
V

ec
t

le
n

gt
h

A
lg

or
it

h
m

F
ir

st
so

lv
e

G
at

h
er

S
ch

u
r

so
lv

e
S

ca
tt

er
F

in
al

so
lv

e
O

ve
ra

ll

80
3

=
0
.5

1
2

1
×

8
=

8
0

1
13

4
2.

5
2.

5
14

10
9

80
3

=
0
.5

1
2

1
×

8
=

8
8

2
5(

2.
6x

)
0.

9(
4.

4x
)

0.
5(

5x
)

0.
1(

25
x
)

6.
3(

2.
2x

)
43

(2
.5

x
)

80
3

=
0
.5

1
2

1
×

8
=

8
8

G
P

U
,

1
7(

1.
8x

)
5.

1
2.

9
3.

2
7.

4(
1.

9x
)

10
7(

1x
)

16
03

=
4.

09
6

1
×

8
=

8
0

1
98

36
10

10
10

7
97

5

16
03

=
4.

09
6

1
×

8
=

8
8

2
47

(2
x
)

6.
4(

5.
6x

)
2.

2(
4.

5x
)

0.
5(

25
x
)

57
.1

(1
.8

x
)

52
1(

1.
9x

)

16
03

=
4.

09
6

1
×

8
=

8
16

G
P

U
,

1
33

(3
x
)

34
11

12
38

(2
.8

x
)

76
0(

1.
3x

)

32
03

=
32

.7
6
8

4
×

1
6

=
64

0
1

10
2

12
9

15
11

9
11

0
99

2

32
03

=
32

.7
6
8

4
×

1
6

=
64

8
2

46
(2

.2
x
)

13
(1

0x
)

1.
8(

10
.7

x
)

1.
8(

66
x
)

60
(1

.8
x
)

41
0(

2.
4x

)

32
03

=
32

.7
6
8

4
×

1
6

=
64

16
G

P
U

,
1

33
(3

x
)

12
5

14
10

9
39

(2
.9

x
)

79
9(

1.
25

x
)

64
03

=
26

2
.1

44
4
×

1
6

=
64

0
1

76
7

10
32

63
85

8
84

7
91

38

64
03

=
26

2
.1

44
4
×

1
6

=
64

8
2

39
4

28
3(

3.
6x

)
5.

8(
10

.8
x
)

6.
3(

13
6x

)
46

3(
1.

8x
)

43
38

(2
x
)

64
03

=
26

2
.1

44
4
×

1
6

=
64

16
G

P
U

,
1

25
1(

3.
1x

)
10

12
57

87
8

31
8(

2.
7x

)
66

21
(1

.4
x
)

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

0
1

79
0

10
51

10
3

10
72

87
5

95
76

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

8
2

43
9(

1.
8x

)
33

8(
3.

1x
)

4.
5(

23
x
)

15
.6

(6
9x

)
48

9(
1.

8x
)

37
08

(2
.6

x
)

12
8
03

=
20

9
7.

15
2

3
2
×

16
=

5
12

16
G

P
U

,
1

24
6(

3.
2x

)
10

03
93

11
14

31
9(

2.
8x

)
69

09
(1

.4
x
)

41

5.3 Summary and conclusions

1. Memory and data access optimizations can bring about upto 2.5x improvement in the

performance for the MPI version of the code.

2. A higher number of nodes is more beneficial as the memory available is higher. For

very large cases, a large number of nodes is necessary so that the code does not run

out of memory.

3. Reducing the communication message length can decrease the run-time of the code

considerably.

4. A change in the process topology can also change the timings considerably. For the

run time for two cases with the same number of processes, the one with higher number

of nodes is more efficient than the one with lesser number of nodes. This may be

attributed to the memory usage and availability.

5. The code is quite sensitive to the hardware architecture, compiler optimizations. The

results and comparisons done above are for the same hardware and compiler optimiza-

tions.

6. For the GPU version, it is very important there is enough amount of parallelism in the

algorithm. When multiple GPU threads are used to solve the tr-diagonal systems, the

solution time reduces considerably even though the memory is being transferred to and

from the GPU to the CPU.

5.4 Future work

Future work may include:

1. Extension to higher order time accurate methods.

2. Inclusion of the new GPU features such as GPU Direct Async to further improve

efficiency.

3. Using the Algorithm 2 to solve the system on the GPU to reduce the communication

timings.

4. Application of method to the higher order space accurate methods and to different

splitting methods.

Bibliography

[1] Jim Douglas. Alternating direction methods for three space variables. Numerische

Mathematik, 4(1):41–63, 1962. ISSN 0029599X. doi: 10.1007/BF01386295. URL

http://dx.doi.org/10.1007/BF01386295.

[2] Alexandre Joel Chorin. Numerical solution of the Navier-Stokes equations. Mathematics

of Computation, 22:745–762, 1968. ISSN 00255718. doi: 10.2307/2004575.

[3] J. L. Guermond and P. D. Minev. A new class of massively parallel direction splitting

for the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 200(23-24):2083–2093, 2011. ISSN 00457825. doi: 10.1016/j.cma.2011.

02.007. URL http://dx.doi.org/10.1016/j.cma.2011.02.007.

[4] J. L. Guermond, P. Minev, and Jie Shen. An overview of projection methods for incom-

pressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44-47):

6011–6045, 2006. ISSN 00457825. doi: 10.1016/j.cma.2005.10.010.

[5] J L Guermond and Jie Shen. Velocity-Correction Projection Methods for Incompressible

Flows. SIAM Journal on Numerical Analysis, 41(1):112–134, 2003. ISSN 0036-1429. doi:

10.1137/S0036142901395400.

[6] J. L. Guermond and Jie Shen. On the error estimates for the rotational pressure-

correction projection methods. Mathematics of Computation, 73(248):1719–1738, 2003.

ISSN 0025-5718. doi: 10.1090/S0025-5718-03-01621-1. URL http://www.ams.org/

journal-getitem?pii=S0025-5718-03-01621-1.

[7] J. L. Guermond and P. D. Minev. Start-up flow in a three-dimensional lid-driven cavity

by means of a massively parallel direction splitting algorithm. International Journal for

Numerical Methods in Fluids, 68(7):856–871, 2012. ISSN 02712091. doi: 10.1002/fld.2583.

42

http://dx.doi.org/10.1007/BF01386295
http://dx.doi.org/10.1016/j.cma.2011.02.007
http://www.ams.org/journal-getitem?pii=S0025-5718-03-01621-1
http://www.ams.org/journal-getitem?pii=S0025-5718-03-01621-1

	Acknowledgements
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Goals and Objectives

	2 Methodology and Ideas
	2.1 Methodology
	2.2 Ideas
	2.2.1 Directional splitting
	2.2.2 Solution strategies
	2.2.2.1 Problems with Algorithm 1

	2.3 Meshing and post-processing
	2.3.1 Meshing
	2.3.2 Post-processing

	3 MPI code and optimizations
	3.1 Message Passing Interface and usage
	3.2 Modules and subroutines
	3.3 Optimizations
	3.3.1 Memory Optimizations

	4 GPU code and optimizations
	4.1 Graphical Processing Units and programming for general purpose
	4.1.1 Programming model
	4.1.2 Threads and Blocks
	4.1.3 Memory handling
	4.1.3.1 Global Memory
	4.1.3.2 Shared Memory
	4.1.3.3 Pinned Memory
	4.1.3.4 Unified Memory

	4.2 Harnessing the parallelism

	5 Results and Conclusions
	5.1 MPI Results and Observations
	5.1.1 Observations and explanations

	5.2 GPU results and observations
	5.2.1 Observations and explanations

	5.3 Summary and conclusions
	5.4 Future work

	Bibliography

