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Abstract

In this paper, compact schemes with non-oscillatory properties are developed

which derive their stability and high spatial resolution properties from the stag-

gered compact finite difference schemes of Boersma [1] and the low dissipation,

hybrid non-oscillatory properties from [2]. This method has been applied specif-

ically to the case of the compressible turbulent jet to demonstrate its applica-

bility to the passive scalar transport which requires the non-oscillatory property

for a physically correct solution. The results and the test cases show that the

method is suitable for such flows and can be easily applied to study physical

processes such as combustion.
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1. Introduction

Direct Numerical Simulations (DNS) are the class of methods in Computa-

tional Fluid Dynamics(CFD) that strive to simulate the flow without any mod-

elling for the effects of turbulence. Therefore, these methods have to capture

a wide range of scales. Hence their applicability has been limited by computa-5

tional power. A detailed review of DNS and its usage has been given by Mahesh

et.al. [3].
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High order methods such as the compact finite difference methods have been

widely used for DNS and LES methods for studying flows due to their capabil-

ity to have a very good resolution which is essential in DNS. Several variants of10

the compact finite methods have been proposed. Lele [4] first used these meth-

ods because they had spectral like resolution with better stability properties.

Mahesh [5] then proposed methods which calculated both the first and second

derivatives and thereby using less computational power. Boersma [1] proposed

compact finite difference methods on a staggered grid which had better stabil-15

ity properties than those of [4] and [5]. These methods have been shown to be

widely applicable [6], [7], [8], [9] and even in fields such as finance [10].

In simulations of compressible flows at high Mach (close to one) and Reynolds

numbers, these compact difference methods are advantageous because they have

low dissipation due to the central nature but also face problems such as oscil-20

lations near the discontinuities [1]. For certain problems these oscillations can

make the solution unphysical. For example, the concentration of reactants in a

reactive flow can become negative which is not physical. Therefore for equations

such as the scalar transport equation a non-oscillatory method (such as WENO)

needs to be used to ensure the correctness of the solution.25

Different authors have observed that when these hyperbolic pde’s with large

characteristic speeds are modeled using central methods (methods taking in-

formation from both sides of the discontinuity), oscillations are observed which

can make the solution unphysical [1]. Therefore, to remove these oscillations

a different class of methods must be used. The class of methods that have30

been used in this paper are called the WENO methods, Weighted Essentially

Non-Oscillatory methods. They are an improvement of the ENO (Essentially

Non-Oscillatory) methods first introduced by Harten et.al [11]. The idea was to

consider many candidate stencils rather than one stencil and measure ”smooth-

ness” of the function in the stencils and choose the stencil in which the function35

is the ”smoothest” in some sense. These class of methods were very effective

for problems that contained discontinuities but were dissipative. This made the

methods quite popular even though the methods are sometimes disspative. Var-
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ious researchers worked to improve the ENO methods to improve the measuring

of smoothness, choosing of stencils and to reduce the dissipation. [12, 13, 14]. It40

was recognized by Liu, Osher and Chan [15] that instead of choosing a smoothest

stencil, one could choose a convex combination of all the stencils thereby giving

a weight to each of the stencils depending on the smoothness of the function

in the respective stencils. These methods were called the WENO methods.

Jiang and Shu [16] did an extensive study of the methods and developed a new45

method to estimate the smoothness indicators which was more efficient and ro-

bust than the divided difference methods used in the previous ENO methods.

This smoothness indicator was based on the measurement of the total variation

of the function in the stencil and are extensively used in almost all WENO and

WENO derived methods today. An added advantage of the WENO methods50

was that the convex combination of the stencils increased the accuracy in the

smooth regions as explained in [16] while capturing discontinuities and reverting

to the normal order in the regions of discontinuities. This was not possible in

ENO because only a single stencil was chosen and hence the maximum order

even in the smooth regions was limited.55

With WENO, many improvements were still possible. The numerical dis-

persion was still quite high enough that the resolution of short waves was not

good enough. Tam and Webb [17] developed dispersion relation preserving

schemes that were suitable for aero-acoustics simulations where even the cap-

ture of small disturbances was important. Martin et.al [18] developed schemes60

that were optimal based on the bandwidth and suitable for compressible tur-

bulent flows. Another aspect of the WENO schemes were that they were still

quite dissipative. Due to the inherent upwinding to capture the discontinuities,

a lot of numerical dissipation was introduced in the schemes. This numerical

dissipation is not desirable for flows that have to resolve a wide range of of65

scales and especially flows where the high wavenumbers play an important role.

In general, dissipation can be reduced by two methods, one being the usage of

a hybrid scheme, that is schemes that used sub-schemes that had lesser dissi-

pation in the smooth regions. Adams and Sharif [19] used a hybrid version of
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the compact upwind and the ENO schemes as a start to these hybrid methods.70

Ren et.al [20] considered schemes that were a hybrid of the WENO and the

compact schemes and improved the transition between the sub-schemes. The

other idea was to use central symmetrical stencils. This was pursued by Martin

et.al [18], but the solution degenerated near critical points. Another idea was to

map the non-linear WENO weights so that they would have a lesser dissipation75

and better properties. This was introduced by Henrick et. al [21] They mapped

the traditional WENO schemes and obtained better properties. Finally, Liu

et al.[2] pursued schemes that were a hybrid of the central compact and the

WENO schemes. They used grid points on both staggered and co-located grids

to calculate the derivatives of the fields. Their weighting procedure involved the80

usage of lower order upwind stencils as well as high order central stencils and

the calculation of smoothness of the fields in these stencils to obtain, first linear

weights and then non-linear weights which then formed the overall scheme. The

weights, both non-linear and linear were dependent on user defined constants

which are to be set based on the nature of the problem.85

This paper aims to combine the aspects of stability even at a low resolu-

tion from the staggered compact finite difference methods [1] and the WENO

methods which are essential in certain flows to make these methods suitable for

DNS and LES by adding an additional hybrid compact WENO interpolation

to the scalar transport equation with a Lagrangian approach for the boundary90

conditions. These non-oscillatory methods are essential to accurately capture

the physics in certain flows such as the ones that involve combustion or chemical

reactions.

The paper is organized as follows. Section 2 gives the governing equations

used for the physically relevant test case. Section 3 explains the computational95

methods used, Section 4 explains the implementation approach, Section 5 aims

to validate the method with two simple tests and a test case from a physical

problem of the compressible turbulent jet and the paper finally concludes with

Section 6.
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2. Governing Equations100

The governing equations involved are the conservation of mass, momentum,

energy and the ideal gas equation to close the set of equations. Additionally,

the scalar transport equation is also solved for the transport of a passive scalar.

The conservation of mass is written as

∂tρ+ ∂i(ρuj) = 0 (1)

where ρ is the fluid density, uj is the velocity vector. The conservation of

momentum equation can be written as

∂t(ρui) + ∂j(ρuiuj + pδij) = ∂jτij (2)

where p is the pressure and τij is the viscous stress tensor. As only Newtonian

fluids are considered here, the viscous stress tensor is defined as

τij = µ{∂jui + ∂iuj − 2(∂kuk)/3} (3)

where µ is the dynamic viscosity of the fluid. In this paper, the dynamic viscos-

ity is not constant but dependent on the temperature through the Sutherland

relation [22]

µ/µ∞ = (T/T∞)3/2(1.4T∞)/(T + 0.4T∞) (4)

where µ∞ and T∞ are the ambient values. The conservation of energy equation

can be written as

∂tE + ∂j(uj(p+ E)) = ∂j(κ(∂jT )) + ∂j(uiτij) (5)

where E is the total energy and is the sum of internal energy, e = ρcvT and

kinetic energy, K = ρuiui/2 that is E = e+K. κ denotes the thermal conduc-

tivity given by κ = µcp/Pr. cp is the specific heat at constant pressure and Pr

is the Prandtl number which denotes the ratio of the momentum to the thermal

diffusivity. cp is given based on the properties of the gas. The equation of state

for an ideal gas gives the relation between the thermodynamic quantities, ρ, p

and T as

p = ρRT (6)
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where R is the gas constant. Subsequently, the speed of sound is given by,

c∞ = Usound =
√
γRT , where γ is the ratio of specific heats, γ = cp/cv.

All the variables are non-dimensionalized using the ambient speed of sound,

c∞, the ambient density ρ∞, the ambient pressure ρ∞c
2
∞, the ambient tem-

perature, c2∞/cp and the ambient concentration, Yk,∞ as the reference scales105

to obtain the non-dimensional numbers Reynolds, Mach, Prandtl and Schmidt

numbers to govern the physics of the flow whose values used in the experiments

are given in Section 5.3.

The scalar transport equation which governs the distribution of the passive

scalar in the flow can be written as

∂t(ρYk) + ∂j(ρujYk) = −∂j(ρκscal(∂jYk)) + ωk (7)

where Yk is the concentration of the kth chemical species where k ∈ {1, 2, ..., n}

and ωk is the chemical source term which can form the source or sink for the kth110

chemical species jk is the diffusive flux which is approximated by a binary flux

approximation [23, 24, 25]. One has to be careful when using multi-component

species as, with a binary flux approximation, the mass conservation for the all

species may not be satisfied and a different flux approximation may have to be

used. But for the purposes of this paper, a binary flux approximation will be115

used and is given by jk = −ρκscal∇Yk.

3. Computational Methods

This section is divided into three parts, the spatial discretization, the tem-

poral discretization and the parallel implementation.

3.1. Spatial discretization120

The main method of spatial discretization for the mass, momentum and the

energy equation is the staggered compact finite difference method of Boersma

which has been explained in detail in [1]. This paper is concerned with the

discretization of the scalar transport equation which is essentially an advec-

tion diffusion equation with a possible source term. To capture the accurate125
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physics, an additional WENO interpolation is done which makes the solution

non-oscillatory.

The spatial derivative is calculated using the compact finite difference method

of Boersma [1] which is given as

αf ′i−1 + f ′i + αf ′i+1 = d
fi+7/2 − fi−7/2

h
+ c

fi+5/2 − fi−5/2
h

+b
fi+3/2 − fi−3/2

h
+ a

fi+1/2 − fi−1/2
h

(8)

where a prime denotes the derivative of the function f . Only a formula for a

first derivative is required unlike in [5] where both derivatives are calculated

at once because the conservative form of the equation is solved for and the130

second derivative is calculated as the derivative of the first derivative. The

coefficients are matched as done in [1] and in [4] with the corresponding Taylor

series expansions. As the grid used was a staggered grid as shown in Figure 1

Figure 1: 2D grid for discretization

The velocities, u, v, w are on the cell faces and the scalars are on the cell

centers. When a product is to be calculated, such as the mass flux, ρu, then
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both the quantities must be multiplied when at the same point. Therefore, an

interpolation formula is needed which is also a compact interpolation formula

given as

α̂fi−1 + fi + α̂fi+1 = d̂(fi+7/2 + fi−7/2) + ĉ(fi+5/2 + fi−5/2)

+b̂(fi+3/2 + fi−3/2) + â(fi+1/2 + fi−1/2)
(9)

The coefficients are given in [1] The WENO interpolation follows the same idea

as in the paper of Liu [2], which is a hybrid compact scheme. The main idea of135

WENO is to use multiple stencils and measure the smoothness of the required

function in the stencils and take a convex combination of the stencils. This

allows for a higher order while producing a non-oscillatory solution.

The WENO idea in [26], was to interpolate the value of the function f at

the cell center, xi+ 1
2

by a (2r − 1) order approximation by

f̃i+ 1
2

= g2r−1(fi−r+1, ..., fi+r−1) (10)

The stencil, S2r−1 is split into r sub-stencils from k = 0, ..., (2r − 1) as

S2r−1
k = (xi+k−r+1, ..., xi+k) (11)

and using the r-th order approximation from each of the stencils,

f̃ki+ 1
2

= grk(fi+k−r+1, ..., fi+k) (12)

where

grk(w0, ..., wr−1) =

r−1∑
j=0

arkjwj (13)

to form a convex combination of the interpolations above to get

f̃i+ 1
2

=

r−1∑
k=0

ωr
kg

r
k(fi+k−r+1, ..., fi+k) (14)

where ωr
k is the non-linear weights dependent on the smoothness in each of the

stencils.140

To combine with the compact finite difference method, we just substitute the

interpolated values to Equation 8 to get the derivative of the required function.
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As discussed before, central schemes have very low dissipation and upwind

schemes have high dissipation. Dissipation is required to capture discontinuities

and hence the WENO scheme uses the upwind stencil to accurately model the

discontinuities. An idea proposed by Liu et al [2] proposes a hybrid weighted

non-linear interpolation that incorporates the idea of WENO to assign weights

to a hybrid scheme consisting of upwind and central stencils. A hybrid linear

interpolation can be written as

f̃hyb
i+ 1

2

= (1− σ)f̃upw
i+ 1

2

+ σf̃ centi+ 1
2

=

3∑
j=0

yj f̃
j

i+ 1
2

(15)

where yj are the linear weights and σ is the parameter that controls the contri-

bution of the upwind and the central stencil and 0 ≤ σ ≤ 1. As seen, if σ = 1,

then it is a fully central scheme and if σ = 0, then it is a upwind scheme with

no central contribution. For the definition of σ we use the ideas from Ren et.

al. [20]. They suggests a σ to be defined as a continuous function rather than

a abrupt function as done by Pirozzoli [27] and defines it as

σ = min

(
1,
%i+ 1

2

%c

)
(16)

where %c is a parameter that controls the dissipation and %i+ 1
2

is a smoothness

indicator defined by %i+ 1
2

= min(%i−1, %i, %i+1, %i+2) and %i has been defined by

%i =
|2(fi+1 − fi)(fi − fi−1)|+ δ

(fi+1 − fi)2 + (fi − fi−1)2 + δ
(17)

where δ is another parameter that gains importance for DNS of turbulent, vis-

cous flows, because of the turbulent fluctuations which may make the smooth-

ness indicator very small making the scheme very dissipative when WENO is

used. Hence to reduce the dissipation and to make sure that the turbulent

fluctuations are not damped, Ren et. al. [20] suggests to use δ as

δ =
0.9%c

1− 0.9%c
ξ2 (18)

and ξ is a parameter that controls the dissipation and it has been verified that

when max((fi − fi−1), (fi+1 − fi), (fi+2 − fi+1)) ≤ ξ, we get σ ≥ 0.9, therefore
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making the central sub-scheme dominate the hybrid scheme. The value of ξ

serves as a threshold value and turbulent fluctuations lesser than ξ will not be

damped by the WENO scheme. Writing it explicitly we obtain the final form

for an example for the 6th order compact WENO as in [2], we get

f̃hyb,lin
i+ 1

2

=
3y0
8
fi−2 −

10y0 + y1
8

fi−1

+
15y0 + 6y1 + 3y2

8
fi +

3y1 + 6y2 + 15y3
8

fi+1

− y2 + 10y3
8

fi+2 +
3y3
8
fi+3

(19)

The linear weights are given by

y0 =
2− σ

32
, y1 =

5(4− σ)

32
, y2 =

5(2 + σ)

32
, y3 =

σ

32
(20)

To get the WENO scheme, we replace the linear weights by the non-linear

weights. Therefore, the hybrid non-linear interpolation is

f̃hyb
i+ 1

2

=
3ω0

8
fi−2 −

10ω0 + ω1

8
fi−1

+
15ω0 + 6ω1 + 3ω2

8
fi +

3ω1 + 6ω2 + 15ω3

8
fi+1

− ω2 + 10ω3

8
fi+2 +

3ω3

8
fi+3

(21)

where the non-linear weights, ωj are the WENO weights given by

ωj =
αj∑3
d=0 αd

, αj = yj

(
C +

τ

ε+ βj

)
, j = 0, ..., 3 (22)

where the αj above is defined to include both the linear weights and the non-

linear weights and hence is different from the usual WENO weights. C is a

parameter that assigns a weight to the linear part of the weight. As observed

by Hu [28], changing C changes the numerical dissipation only slightly. A larger

C produces less numerical dissipation. Very large values of C produce numerical

instabilities for flows with strong shocks. ε is a small positive number of order

machine precision used to prevent the denominator from going to zero. τ is

called the reference smoothness indicator defined by

τ = β3 −
1

8
(β0 + 6β1 + β2) (23)

10



and finally the smoothness indicators, βj are as given in [2].

When an upwind scheme is used, the characteristic velocity of the equation

must be looked at carefully. Depending on whether the derivative of the flux is145

positive or negative, the scheme would be upwind or downwind and therefore

the stencil must be adapted accordingly. All the above interpolations are given

for a positive flux derivative. When the flux derivative is negative, the stencil is

mirrored about the point xi+ 1
2
. It is important to split the fluxes appropriately

to make sure that the upwind stencil is only used on the positive fluxes and the150

downwind on the negative fluxes.

In general, it is possible to split the fluxes into positive and negative fluxes.

The important aspect to note while splitting the fluxes is that we need to have

the split fluxes to have as many derivative as the order of the scheme in the

least. There are many choices for flux splitting methods.155

We use the Lax-Friedrichs flux splitting, where the total flux is split as

f±(u) = 1
2 (f(u) ± αu). There are two variants of the Lax-Friedrichs splitting,

one is the global splitting and the other is the local splitting, the difference

between the two being the value of α = max(|f ′(u)|), where the maximum is

taken over either the global or the local range of u. For the advection equation,160

the f ′(u) is nothing but the Jacobian of the governing equation and sometimes

called the characteristic velocity which is also the slope of the characteristics of

the solution when using the method of characteristics.

3.2. Temporal Discretization

As the flow to be studied here is a turbulent, unsteady flow, we use explicit165

methods. The most well known explicit methods are the Runge Kutta family

of methods. The Runge-Kutta 4th order method has been used in this paper

as in Table 1.

For a detailed analysis of the stability analysis of the Runge-Kutta methods

using Fourier analysis and stability plots that define the time step restrictions170

based on the CFL number, one can refer [29, 30].
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Table 1: Butcher Tableau - RK4

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

3.3. Boundary conditions

Apart from the usual boundary conditions, for numerical implementations,

numerical boundary conditions (compatibility relations) are sometimes required

to solve for unknowns not specified at the boundaries. As we work in a Cartesian175

grid, our domain is a box and hence we have six face boundaries. The left

boundary along the x axis is the inflow boundary where the jet enters the

domain through the nozzle as shown in Figure 2. The domain starts at the exit

of the nozzle and the nozzle is not a part of the domain. The right boundary

along x is the outflow boundary. The four other faces form the walls and have180

normals that are perpendicular to the x direction.

This paper makes use of the ambient boundary conditions in which the

quantities at the boundaries are set to the far-field ambient values. This means

that for the boundary condition to make sense and be physical, one has to either

increase the domain size to allow for the physical region of influence of the jet to185

be far from the boundaries emulating the far-field region or one can use sponge

layers and damping methods to reduce the abrupt change of the quantities when

the boundaries are close to the physical region of influence of the jet.

In general the well known boundary conditions are as developed by Poinsot

et.al. [31] and Thompson [32]. But these boundary conditions require a large190

domain when ambient conditions are used as they may produce reflections which

can influence the solution. In this paper, the basic idea of the boundary con-
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Figure 2: The free turbulent jet geometry

ditions being the same as Poinsot et.al. [31], additional damping layers were

added to ensure that the solution was reflection free.

As given in [31], for a subsonic inlet, the boundary conditions are not well195

defined. Therefore, an artificial convection velocity is added to the axial velocity

to make it locally supersonic. This is also done at the outflow where the flow

is convected out of the domain axially with an additional axial velocity. This

supersonic velocity at the inflow and the outflow means that the no other flow

variables need to be specified at the outflow to obtain a well-defined problem.200

The artificial convection velocity is reduced to zero uniformly in the interior

of the domain. The region where the artificial convection velocity is added

is limited to a region very close to the inflow and the outflow of the domain

so that the solution is not affected by it. At the boundaries whose normals

are perpendicular to the axial direction, the flow variables are set to ambient205

conditions. Even though this is strictly not true, but due to computational and

physical constraints to limit the domains, we impose this. As these boundaries
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are far away (effectively, due to the damping and sponge layers) from the region

of influence of the jet, this condition still gives meaningful results. Additionally,

damping layers are added to ensure that the reflection from the boundaries do210

not affect the solution.

4. Implementation

The first aspect of parallelization is the decomposition of the domain and

assignment of the different processes to the sub-divided domains. The code in

this paper uses the 2decomp 3 pencil decomposition library to divide the domain.215

As the problem in consideration is a three-dimensional problem, the x, y and

z directional solutions are done sequentially. The x and the z solves are done

with in one logical arrangement. The data is then transposed such that there

are no divisions perpendicular to the y axis and the y solves are done with this

logical arrangement.220

This paper uses the staggered schemes of Boersma [1] to differentiate each

of the terms and to interpolate between the staggered and the co-located grids

when needed. The scalars, ρ, e, T, Yk are present on the cell centers whereas the

vector fields, u, v, w are on the cell faces corresponding to the respective normal

directions.225

4.1. Conservation of mass

The mass conservation equation is given in Equation 1. This equation re-

quires the spatial derivative of the mass fluxes, ρuj with respect to the direction

xj . First the density is interpolated to the face in the direction of xj , and multi-

plied with uj to form the flux product. This is stored for further use. The term230

∂(ρuj)/∂xj is then calculated at the cell center. The equation is then stepped

in time.

32decomp:http://www.2decomp.org/index.html
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4.2. Conservation of momentum

The momentum equations are given in Equation 2. They are a set of three

equations in the x, y, z directions. Two terms can be identified here: the convec-235

tive terms, ∂(ρujui)/∂xj and the diffusive terms, ∂(τij)/∂xj . For the convective

term, ∂(ρujuj)/∂xj , the velocities, uj ’s are interpolated to the cell centers and

the derivative is computed at the cell faces. For the term ∂(ρujui)/∂xj , the

flux, ρuj and velocity ui are interpolated to the cell corner and the derivative is

obtained at the cell face. The pressure gradient for the x momentum equation240

is calculated at the cell face directly as the values are already available at the

cell centers. The diffusive terms are also calculated in a similar fashion where

the role of the flux is taken by the first derivative. The terms are added and the

equation is stepped in time to obtain the fluxes through which the velocities are

then reconstructed.245

4.3. Conservation of energy and scalars

Both the scalar conservation equations have two main terms, the convective

terms and the diffusive terms. The convective terms, ∂((E + p)uj)/∂xj and

∂(Ykρuj)/∂xj are calculated by interpolating the scalars, E, Yk to the cell faces

and multiplying with the velocities and calculating the derivative at the cell250

centers. The diffusive terms involve the calculation of a first derivative term of

the scalar (T or Yk), which is calculated at cell face directly and multiplication

of that with the diffusion coefficients, κ which is interpolated to the cell face

and multiplied with the derivative previously calculated and the final derivative

is calculated at the cell center. The last term for the energy equation includes255

a derivative term that models the energy diffusion by shear. The shear stress

term, τij is interpolated to the cell face and multiplied with the velocity, uj and

stored during the solution of the momentum equation. This term is then used

here and the final derivative is calculated at the cell center.

For the scalar equation, the WENO method has been used to remove the260

oscillations that were occurring if solved without a non-oscillatory method. The

WENO interpolation is required only for the convective terms in the scalar
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equation and before taking the derivative, the terms are interpolated through a

WENO procedure. Therefore, for the convective terms of the form ∂(Ykρuj)/∂xj ,

the velocity, uj is interpolated to the cell center and the product Ykρuj is formed.265

This quantity is then interpolated using the WENO procedure as in Equation 21

to the cell faces and the derivative is calculated. As this is a convective term and

the WENO interpolation involves stencils some of which are upwind(downwind)

and that the convective velocity (ρuj) can be positive or negative, we need to

use a flux splitting method to use the appropriate stencils. A Lax-Friedrichs270

flux splitting was used. The convective velocity was the interpolated velocity

(to the cell center) multiplied with the density. After the WENO interpolation

the derivative of the term was taken using the compact finite difference method

of Boersma [1].

The stencils for the WENO interpolations are centered about xi+1/2. This275

means that at the left and right boundaries in all the three spatial directions,

appropriate ghost values need to be calculated. This is done using a simple

Lagrangian extrapolation procedure. This procedure is similar to the Lax-

Wendroff procedure[33] which is a more generalized version of the Lagrangian

extrapolation procedure.280

5. Numerical Tests

This section compares the different methods and shows the improvement

possible due to the WENO methods. Two test cases were considered, the ad-

vection equation and a solid body rotation which is equivalent to a 2D advection

case which has been taken from the paper of Zalesak [34].285

5.1. The Advection equation

The advection equation as shown in Equation 24 is an important test case

for all numerical methods as the exact solution is known and the behaviour is

very well understood. Even though it is a simple linear equation, for some initial
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conditions, it can be difficult to accurately solve the equation.290

(Ctest)t + utest(Ctest)x = 0 (24)

Two initial conditions were considered. One being a smooth initial condition,

a sine wave and another being a square wave, with two sharp discontinuities.

For both cases, the advection velocity, utest = 1.0. The final time, tend = 10.0.

The number of grid points was equal to 100 for the square wave and 50 for the

sine wave. The CFL number, CFL = dt|utest|
dx was set at 0.7. To emulate the295

effects of interpolation between the cell centers and cell faces in the problem, the

values of Ctest originally at the cell centers were interpolated to the cell faces.

For just the compact finite differencing method, the derivative at the cell faces

were taken to obtain the values of the derivatives at the cell centers. For the

compact WENO methods, the cell face values were interpolated back to the cell300

centers and the final derivative was taken using the values from the cell centers

and the cell faces as done by Liu et al. [2].

Figure 3 shows the comparison between the two schemes for the solution of

the advection equation. The following observations can be made:

1. The compact finite difference scheme oscillates near the discontinuities305

which makes it unsuitable for problems with strong discontinuities, Figures

3(a),3(b). For a smooth initial condition, it behaves very well as can be

seen from Figures 3(c),3(d).

2. The WENO 4th order scheme does not oscillate either with the smooth

initial condition or in the presence of strong discontinuities.310

From the above test, we showed the need for the WENO methods and the

situation in which WENO methods are required. As the computational effort

required by the 4th order interpolation is lesser than that of the 6th order inter-

polation and that the 4th order interpolation is stable and non-oscillatory, this

paper demostrates the 4th order interpolation for all simulations but alterna-315

tively the 6th order could be used as well.
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Figure 3: Numerical Tests: Comparison of WENO with central compact schemes

5.2. Slotted disk test

The slotted disk test as shown in Equation 25 is a test case that demonstrates

the effectivity of the method in 2D. Though, it is very difficult to find a physical

application where no diffusion is involved, this method shows the effectiveness320

of the method where the oscillations are reduced and the numerical dissipation

added is also minimal.

(Ctest)t + fx + gy = 0

f = −Ω(y − y0)Ctest

g = Ω(x− x0)Ctest

(25)
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where Ω is the (constant) angular velocity in rad/s which is set such that one

full revolution is effected in 628 cycles and (x0, y0) is the center of the rotation.

The initial condition is such that the value in the slotted disk is set to a non-zero325

value ( 1.0 here) and outside the disk it is set to zero.

(a) Zalesak test setup (b) Exact solution

(c) Compact FD (d) Compact WENO

Figure 4: Zalesak slotted disk test case

Figure 3 shows the comparison between the two schemes for the solution of

the Zalesak test case. The compact WENO method reduces oscillations by a

large extent compared to the compact FD case. Very little numerical dissipation

is added.330

5.3. A compressible turbulent jet

The compressible turbulent jet has been simulated as explained in Section

4. The Reynolds number for the tests has been set at a moderately high value

of 8500 with a Mach number of 0.9. The tests have been run for two Schmidt

numbers, 0.5 and 1.0. The size of the grid is 960×480×480 with a time step size335
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of 1/200. The dissipation has been set to low meaning that ε = 10−9, C = 9.0,

rc = 0.1. This ensures that the oscillations are completely damped upto the

required level and the solution is still meaningful and not overly dissipated.

First, a validation of the compact FD method is shown with experimental results

[35, 36] with the help of the normalized averaged centerline velocity. For the340

purposes of comparison, the Reynolds number and Mach number for this test

are 104 and 0.5 respectively. Fig 6 shows the decay in the velocity normal to the

y direction. Fig 5 shows the effect of the compact WENO method used here and

the improvement over the compact FD method and underscores the need for the

compact WENO method in this case to accurately capture the discontinuities345

and remove the oscillations.

(a) Compact FD (b) Compact WENO

Figure 5: Oscillations in scalar concentration,Yk fields, Re = 8500

With the compact FD validated, we would like to next show the effectiveness

of method in capturing the scalar concentration. The decay rate in the scalar

concentration is shown in Fig 7. We see that the expected decay rates are

between 5.0 and 5.9 as given in [37]. The decay rates observed here in Table350

2 as well in other numerical simulations(eg. [37]) are lower than those of their

experimental counterparts. This can be attributed to the disturbances and

non-ideal conditions in experiments which are difficult to circumvent/replicate

computationally. Fig 8 shows two variations for two different schmidt numbers.
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Figure 6: NACV decay at Re = 104

We see that for lower schmidt numbers, the dominating instability modes are355

varicose whereas for the higher Schmidt numbers are helical as expected and

even though both the modes can exist, only one mode can dominate the flow

[38, 39].

(a) Comparison with compact FD (b) Comparison of different Schmidt num-

bers

Figure 7: Decay rate of Yk at a Reynolds number of 8500.
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Method Decay rate (inverse of the slopes)

Velocity, Experimental, HCG [40] 5.78

Velocity, Experimental, WF [40] 5.71

Velocity, Current DNS 5.11

Scalar concentration, Compact FD, Sc = 1.0 4.89

Scalar concentration, Compact WENO, Sc = 1.0 6.62

Scalar concentration, Compact WENO, Sc = 0.5 6.17

Table 2: Decay rates of NACV at Re = 1 × 104

(a) Compact WENO, Sc = 1.0 (b) Compact WENO, Sc = 0.5

Figure 8: Scalar concentration,Yk fields, Re = 8500

6. Conclusion

In conclusion, we observed that scalar transport in a compressible turbu-360

lent jet cannot be accurately modeled by just the compact FD methods. The
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staggered compact WENO is a hybrid of the compact FD methods which have

been used extensively and the hybrid WENO methods. As the reduction of

dissipation is one of the important aspects in WENO and other non-oscillatory

methods, a compromise if to use a hybrid stencil, which reduces dissipation365

while maintaining the non-oscillatory behaviour as developed by Liu et.al. The

method has the advantages of stability, high spatial resolution derived from the

staggered compact method of Boersma while being able to simulate problems

which require a non-oscillatory behaviour. We observed that the dissipation

can be controlled as required according to the physical problem at hand. This370

method is suitable especially for compressible turbulent jets in combustion as

they can accurately capture the oxidiation of the fuel and the transport of the

scalar species.
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