
Motivation Background Implementation and Experimentation Results Outlook

Two-stage Asynchronous Iterative Solvers for multi-GPU Clusters

Pratik Nayak Terry Cojean Hartwig Anzt

pratik.nayak@kit.edu terry.cojean@kit.edu hartwig.anzt@kit.edu

Steinbuch Center for Computing,

Karlsruhe Institute for Technology

12th November, 2020

1 / 25

mailto:pratik.nayak@kit.edu
mailto:terry.cojean@kit.edu
mailto:hartwig.anzt@kit.edu

Motivation Background Implementation and Experimentation Results Outlook

Objectives

1 Our objectives:

To Study two-stage asynchronous iterative algorithms for Exascale.

In particular, study multi-GPU, multi-node problems.

And provide a framework to test these algorithms for a wide variety of problems and

architectures.

2 / 25

Motivation Background Implementation and Experimentation Results Outlook

Motivation

3 / 25

Motivation Background Implementation and Experimentation Results Outlook

Begin of the Accelerator era

Figure: Computing trends

4 / 25

Motivation Background Implementation and Experimentation Results Outlook

Current and future computing trends

5 / 25

Figure: Top 3 of the top 500

1 Frontier: AMD Epyc CPUs + AMD

Instinct GPUs ('1.5 EF, by 2021,

First Exascale system)

2 El Capitan: AMD Epyc CPUs +

AMD Instinct GPUs ('2 EF, by

2023)

3 Aurora: Intel Xeon + Intel Xe

GPUs (2021-2022)

4 Leonardo (EuroHPC): Intel CPU +

NVIDIA A100 GPUs (≈200 PF)

5 LUMI (EuroHPC): AMD Epyc

CPUs + AMD Instinct GPUs

(≈550 PF, by Q4 2021)

Motivation Background Implementation and Experimentation Results Outlook

Synchronous v/s Asynchronous models

1 Bulk synchronous model of parallel execution (Most algorithms today).

A known task graph.

Needs regular synchronization between processes.

Not feasible for large number of processes.

6 / 25

Motivation Background Implementation and Experimentation Results Outlook

Synchronous v/s Asynchronous models

1 Bulk synchronous model of parallel execution (Most algorithms today).

A known task graph.

Needs regular synchronization between processes.

Not feasible for large number of processes.

2 Asynchronous model of execution (Where algorithms need to be).

Ideally, no synchronization.

Feasible and possibly necessary for large number of processes.

Possibly unknown task graph.

3 Partial Synchronization model (A compromise, future work).

Regular synchronization (relaxed) between processes.

Might work for large number of processes.

Partially known task graph.

7 / 25

Motivation Background Implementation and Experimentation Results Outlook

Synchronous v/s Asynchronous models

1 Bulk synchronous model of parallel execution (Most algorithms today).

A known task graph.

Needs regular synchronization between processes.

Not feasible for large number of processes.

2 Asynchronous model of execution (Where algorithms need to be).

Ideally, no synchronization.

Feasible and possibly necessary for large number of processes.

Possibly unknown task graph.

3 Partial Synchronization model (A compromise, future work).

Regular synchronization (relaxed) between processes.

Might work for large number of processes.

Partially known task graph.
7 / 25

Motivation Background Implementation and Experimentation Results Outlook

Background

8 / 25

Motivation Background Implementation and Experimentation Results Outlook

Problem Formulation.

∂Ω

Ω

Figure: Generic Domain

Problem:

Lx = f in Ω; Bx = g on ∂Ω

Linear system:

Ax = f
9 / 25

Motivation Background Implementation and Experimentation Results Outlook

Schwarz methods

1 Initially used to prove convergence of the Poisson problem for general domains (Schwarz,

1870). Alternating method. Slow convergence.

2 Solve each subset(subdomain) independently and communicate between each ”iteration”.

3 Gained popularity with parallel computers.

10 / 25Source: ddm.org

Motivation Background Implementation and Experimentation Results Outlook

Restricted Additive Schwarz methods

An improvement of the parallel version of the Schwarz method for faster convergence.

Group unknowns into subsets:

xj = R̃jx , j = 1, ...,N

R̃j is the rectangular Restriction matrices which corresponds to a

non-overlapping decomposition.

Used widely as a preconditioner:

M−1RAS =
N∑
j

R̃T
j A−1j Rj

Restricted Additive Schwarz

Compute using the full overlapped sub-matrix, but update only your locally associated values.

11 / 25

Source: Schematic inspired by Yamazaki et.al, 2019, doi:

10.1016/j.parco.2019.05.004

Motivation Background Implementation and Experimentation Results Outlook

Restricted Additive Schwarz methods

RAS:

xk+1
p = xkp +

N∑
j

R̃p(Rj f − (RjAR
T
j)−1Rjx

k)

Advantages:

1 Saves communication compared to Additive Schwarz.

2 Reduced subdomain update count compared to Additive Schwarz.

3 Collision free parallel implementation, free from weightings.

12 / 25

Source: Efstathiou and Gander, 2003, doi:

10.1023/B:BITN.0000014563.33622.1d

Motivation Background Implementation and Experimentation Results Outlook

Asynchronous iterative methods

Asynchronous iteration:
x (s)(0) = x

(s)
0

x (s)(n + 1) =

R(s)
(
x (1)(τ

(s)
1 (n)), ..., x (p)(τ

(s)
p (n))

)
if s ∈ σ(n)

x (s)(n) if s /∈ σ(n)

(1)

where, s = 1, ..., p and p is the number of subdomains.

τ
(s)
j (n) is the delay function that represents the subdomain update number of the data from

subdomain j available at s at subdomain update number n.

σ(n) is the set of subdomains which update at subdomain update number n.

13 / 25Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z

Motivation Background Implementation and Experimentation Results Outlook

Necessary conditions for convergence

Necessary conditions (not necessarily sufficient):

1

∀s, j ∈ 1, ..., p,∀n ∈ N∗, τ (s)j (n) ≤ n (2)

States that the delay function cannot return future iterations.

2

∀s ∈ 1, ..., p,#{n ∈ N|s ∈ σ(n)} = +∞ (3)

States that no subdomain can stop updating its neighbors.

3

∀s, j ∈ 1, ..., p, lim
n→∞

τ
(s)
j (n)} = +∞ (4)

States that new data will eventually always be provided to the subdomain.

14 / 25Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z

Motivation Background Implementation and Experimentation Results Outlook

Implementation and Experimentation

15 / 25

Motivation Background Implementation and Experimentation Results Outlook

The RAS iterative solver.

Algorithm 1 RAS Iterative solver

1: procedure Iterative solution(A, x , b)

2: procedure Initialization

3: Partition matrix . objective based

4: Distribute data

5: Initialize data

6: procedure Solve

7: while (subd update count < max subd update count or until convergence) do

8: Locally solve the matrix . Iterative / direct

9: Exchange boundary information

10: Update boundary information

11: Check for Convergence . Decentralized

12: Gather the final solution vector and post-processing

16 / 25

Motivation Background Implementation and Experimentation Results Outlook

Experimentation Parameters

1 Everything implemented with Ginkgo.

2 Experiments performed on Summit, ORNL.

1 6 GPU’s per node, NVIDIA Tesla V100’s.

3 RDMA communication with MPI-onesided functions (IBM Spectrum MPI with CUDA

Aware).

4 Partitioning with METIS.

5 Global convergence detection is decentralized (leader election based) (Bahi et.al, 2005).

6 Test problems:

1 3D Laplacian problem with 2nd order basis functions (deal.ii, example 6) (PCG)

2 2D Advection problem with 5th order basis functions (deal.ii, example 9) (PGMRES)

17 / 25Source: Bahi et.al, doi: 10.1109/TPDS.2005.2

Motivation Background Implementation and Experimentation Results Outlook

Experimentation Parameters

1 Global relative residual reduction goal: 1e-12

2 Local subdomain iteration count varies from 30 to default (def, a local relative residual

reduction goal of 1e-6)

3 Experiments run on upto 36 GPUs.

4 We compute final true residual norm (||r ||2 = ||b − Ax ||2) to verify correctness along with

comparing the solutions by visualization (for a token problem size)

18 / 25

Motivation Background Implementation and Experimentation Results Outlook

System configuration: Summit, ORNL

H
B

M
2

16
 G

iB

V
ol

ta
 G

P
U

7
T

flo
p/

s

900

GB/s
H

B
M

2
16

 G
iB

V
ol

ta
 G

P
U

7
T

flo
p/

s
900

GB/s

 50 GB/s

IBM
POWER9

IBM
POWER9

 50 GB/s

H
B

M
2

16
 G

iB

V
ol

ta
 G

P
U

7
T

flo
p/

s

900

GB/s

 50 GB/s

 50 GB/s

Infiniband
NIC

Infiniband
NIC

DDR4
RAM

256 GiB

DDR4
RAM

256 GiB

 16 GB/s

 170 GB/s

IBM
POWER9

IBM
POWER9

DDR4
RAM

256 GiB

DDR4
RAM

256 GiB

 16 GB/s

 170 GB/s

64

GB/s

H
B

M
2

16 G
iB

V
olta G

P
U

7 T
flop/ s

900

GB/s

H
B

M
2

16 G
iB

V
olta G

P
U

7 T
flop/ s

900

GB/s

H
B

M
2

16 G
iB

V
olta G

P
U

7 T
flop/ s

900

GB/s

 50 GB/s 50 GB/s
 50 GB/s

 50 GB/s

 12.5 GB/s 12.5 GB/s

19 / 25Source: Kahle et.al, doi: 10.1109/ ISSCC.2019.8662426

Motivation Background Implementation and Experimentation Results Outlook

Results

20 / 25

Motivation Background Implementation and Experimentation Results Outlook

Comparison with local direct solver - Time per subdomain update

(a) Laplacian problem (b) Advection problem

1 Communication time similar between direct and iterative solvers.

2 Local solve time is significantly lesser.

3 Advection problem (with preconditioned GMRES) is harder to solve.
21 / 25

Motivation Background Implementation and Experimentation Results Outlook

Controlling the local iteration criterion - Synchronous

(a) Laplacian problem (b) Advection problem

1 Optimal local iteration count depends on problem size.

2 Number of subdomain updates decreases with increasing local max-iter counts.

3 Local solver cost increases with increasing local max-iter counts.
22 / 25

Motivation Background Implementation and Experimentation Results Outlook

Preconditioner effects and comparisons with synchronous

(a) Laplacian problem (b) Advection problem

1 Asynchronous is better than synchronous in almost all cases.

2 Block-jacobi preconditioner seems to be the most efficient.

3 ILU(0) seems to be too expensive compared to its effectiveness.

23 / 25

Motivation Background Implementation and Experimentation Results Outlook

Outlook

24 / 25

Motivation Background Implementation and Experimentation Results Outlook

Summary and Future work

Summary

Asynchronous methods can improve the overall time to solution.

Two stage methods can be efficient, particularly in conjunction with asynchronous

communication.

Balancing local max-iteration count and global subdomain update count is essential with

multi-stage methods.

Future Work

Estimating error and convergence bounds for these multi-stage asynchronous methods.

Extension to multi-level Schwarz methods.

25 / 25

	Motivation
	Background
	Implementation and Experimentation
	Results
	Outlook

