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Why ? 

● Almost all research employs some form of software.

● Software lifecycle often exceeds hardware lifecycles.

● Good sustainable software is THE key component of computational 

science.

● Ingraining good software practices in students is important to their 

careers in industry and in academia. 
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What ? 

● Version control.

● Continuous Integration.

● Automated testing

● Collaborative peer review.
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Version Control

● Offload the code “version” management.

● Eases collaboration and parallel work on a single code base.

● Examples: SVN, Mercurial, git, Perforce etc. 
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Version Control

● “branch” your work from the 

main codebase.

● “commit” your distinct changes.

● Request your changes to be 

merged back into the main 

codebase.

A common git workflow
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Automated Testing

● Verify code correctness and 

robustness.

● Allow easy identification of bugs 

in large code-bases.

● Streamline development and 

integrate verification into 

development.
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Continuous integration

● Compile and test code on a variety of 

platforms and machines.

● Automatically identify breaking 

changes.

● Perform static analyses and ensure 

high code quality.

● Verify code uniformity and formatting

● Deploy code and documentation.
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Peer review - Platforms

● Many platforms available for collaborative coding.

● Gitlab, Github, Bitbucket are examples of such platforms.

● They provide web-based interface

○ to interact with code,

○ give feedback on specific lines of code,

○ show pass/failure of the CI pipelines
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Peer review - code review

● Peer review is essential in collaborative 

software development.

● View code critically in context of the 

entire project.

● Making sure the code follows the code 

guidelines.

● Looking for performance and 

correctness gotchas.
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Where ? 

● Numerical Linear Algebra for High Performance Computing course at Karlsruhe Institute of 

Technology as a pilot programme.

●  Course content:

○ Parallel programming basics.

○ OpenMP, CUDA and MPI programming models.

○ BLAS kernels and their implementations.

○ Iterative solvers.

○ Preconditioners.

Target audience: Master students in the Math and Computer Science departments.
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How ? 

● Incorporate these practices into the course.

● Encourage students to experiment with algorithms and implementations and not be bogged 

down in build and platform issues.

● Homework schedule:

○ HW1: Basic Linear Algebra operations.

○ HW2: Dense Matrix-Vector multiplication with OpenMP and CUDA.

○ HW3: LU factorization with OpenMP tasking framework.

○ HW4: Sparse Matrix-Vector multiplication with OpenMP and CUDA.

○ HW5: An Iterative linear system solver with CUDA. 
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Main repository

How ? 

● Create a common Exercise framework for all to work on.

● Provide the building blocks: Compilation, testing and benchmarking frameworks and setup a 

Continuous Integration setup to automatically test the code on push.

https://github.com/pratikvn/nla4hpc-exercises-framework

https://github.com/pratikvn/nla4hpc-exercises-framework
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● Students create forks from the main repository, create separate branches for each HW and on 

submission date submit a Merge Request to merge the changes back to the main repository.
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How ? 

● They are assigned a Merge Request to review and have certain guidelines to follow.

● At the deadline, the Merge Requests are merged back into the main branch and graded.
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Peer review in action
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Peer review in action

● CI is run on the forks.
● Discussion on the gitlab 

web interface.
● Approval from reviewer 

after addressing the 
comments.

● Merge after approval.
● Green is assignee
● Red is reviewer.
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Feedback. 

Some feedback from students. (N=4)

1 5
Very useful/ Very easy Not useful/ Not easy 
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Conclusions and Perspectives. 

● We saw a marked improvement in code quality as the course progressed, 

which was not the case in our previous course offerings.

● This approach seems more scalable even with a lot more students.
○ It can be almost completely automated.

● The students were able to focus on algorithms and optimizations rather 

than on build system and other orthogonal issues.

● It encourages students to showcase their code and makes them 

comfortable with contributing to open-source projects.
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Thank you!

nayak@kit.edu
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Backup
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How ? 

● Create a common Exercise framework for all to work on.

● Provide the building blocks: Compilation, testing and benchmarking frameworks and setup a 

Continuous Integration setup to automatically test the code on push.

● Students create forks from the main repository, create separate branches for each HW and on 

submission date submit a Merge Request to merge the changes back to the main repository.

● They are assigned a Merge Request to review and have certain guidelines to follow.

● At the deadline, the Merge Requests are merged back into the main branch and graded.

● Students submit an additional report analyzing their code and performance.
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