
A collaborative peer review process for
grading coding assignments in

coursework
Pratik Nayak, Fritz Göbel, Hartwig Anzt

Karlsruhe Institute of Technology

June 18th
Workshop on Teaching Computational

Science, ICCS 2021

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Outline

● Why ?

● What ?

● Where ?

● How ?

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Outline

● Why ?

● What ?

● Where ?

● How ?

● Feedback

● Conclusions and Perspectives

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Why ?

● Almost all research employs some form of software.

● Software lifecycle often exceeds hardware lifecycles.

● Good sustainable software is THE key component of computational

science.

● Ingraining good software practices in students is important to their

careers in industry and in academia.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

What ?

● Version control.

● Continuous Integration.

● Automated testing

● Collaborative peer review.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Version Control

● Offload the code “version” management.

● Eases collaboration and parallel work on a single code base.

● Examples: SVN, Mercurial, git, Perforce etc.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Version Control

● “branch” your work from the

main codebase.

● “commit” your distinct changes.

● Request your changes to be

merged back into the main

codebase.

A common git workflow

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Automated Testing

● Verify code correctness and

robustness.

● Allow easy identification of bugs

in large code-bases.

● Streamline development and

integrate verification into

development.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Continuous integration

● Compile and test code on a variety of

platforms and machines.

● Automatically identify breaking

changes.

● Perform static analyses and ensure

high code quality.

● Verify code uniformity and formatting

● Deploy code and documentation.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Peer review - Platforms

● Many platforms available for collaborative coding.

● Gitlab, Github, Bitbucket are examples of such platforms.

● They provide web-based interface

○ to interact with code,

○ give feedback on specific lines of code,

○ show pass/failure of the CI pipelines

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Peer review - code review

● Peer review is essential in collaborative

software development.

● View code critically in context of the

entire project.

● Making sure the code follows the code

guidelines.

● Looking for performance and

correctness gotchas.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Where ?

● Numerical Linear Algebra for High Performance Computing course at Karlsruhe Institute of

Technology as a pilot programme.

● Course content:

○ Parallel programming basics.

○ OpenMP, CUDA and MPI programming models.

○ BLAS kernels and their implementations.

○ Iterative solvers.

○ Preconditioners.

Target audience: Master students in the Math and Computer Science departments.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

How ?

● Incorporate these practices into the course.

● Encourage students to experiment with algorithms and implementations and not be bogged

down in build and platform issues.

● Homework schedule:

○ HW1: Basic Linear Algebra operations.

○ HW2: Dense Matrix-Vector multiplication with OpenMP and CUDA.

○ HW3: LU factorization with OpenMP tasking framework.

○ HW4: Sparse Matrix-Vector multiplication with OpenMP and CUDA.

○ HW5: An Iterative linear system solver with CUDA.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Main repository

How ?

● Create a common Exercise framework for all to work on.

● Provide the building blocks: Compilation, testing and benchmarking frameworks and setup a

Continuous Integration setup to automatically test the code on push.

https://github.com/pratikvn/nla4hpc-exercises-framework

https://github.com/pratikvn/nla4hpc-exercises-framework

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Main repository

Student forks Fork 1

Run
CI

Create MR

Submission day

Fork 2

Run
CI

Create MR

Fork n

Run
CI

Create MR

In sync

...

...

How ?

● Students create forks from the main repository, create separate branches for each HW and on

submission date submit a Merge Request to merge the changes back to the main repository.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Main repository

Student forks Fork 1

Run
CI

Create MR

Review from
Peer

Submission day

Review day

Fork 2

Run
CI

Create MR

Review from
Peer

Fork n

Run
CI

Create MR

Review from
Peer

In sync

...

...

...U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

How ?

● They are assigned a Merge Request to review and have certain guidelines to follow.

● At the deadline, the Merge Requests are merged back into the main branch and graded.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Main repository

Main repository

Student forks Fork 1

Run
CI

Create MR

Review from
Peer

Merge after
approval

Submission day

Review day

Merge day

Fork 2

Run
CI

Create MR

Review from
Peer

Merge after
approval

Fork n

Run
CI

Create MR

Review from
Peer

Merge after
approval

In sync

...

...

...

...

U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

How ?

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Peer review in action

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Peer review in action

● CI is run on the forks.
● Discussion on the gitlab

web interface.
● Approval from reviewer

after addressing the
comments.

● Merge after approval.
● Green is assignee
● Red is reviewer.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Feedback.

Some feedback from students. (N=4)

1 5
Very useful/ Very easy Not useful/ Not easy

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Conclusions and Perspectives.

● We saw a marked improvement in code quality as the course progressed,

which was not the case in our previous course offerings.

● This approach seems more scalable even with a lot more students.
○ It can be almost completely automated.

● The students were able to focus on algorithms and optimizations rather

than on build system and other orthogonal issues.

● It encourages students to showcase their code and makes them

comfortable with contributing to open-source projects.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Thank you!

nayak@kit.edu

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Backup

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

How ?

● Create a common Exercise framework for all to work on.

● Provide the building blocks: Compilation, testing and benchmarking frameworks and setup a

Continuous Integration setup to automatically test the code on push.

● Students create forks from the main repository, create separate branches for each HW and on

submission date submit a Merge Request to merge the changes back to the main repository.

● They are assigned a Merge Request to review and have certain guidelines to follow.

● At the deadline, the Merge Requests are merged back into the main branch and graded.

● Students submit an additional report analyzing their code and performance.

Pratik Nayak, nayak@kit.eduWTCS, ICCS 2021

Main repository

Main repository

Student forks Fork 1

Run
CI

Create MR

Review from
Peer

Merge after
approval

Submission day

Review day

Merge day

Fork 2

Run
CI

Create MR

Review from
Peer

Merge after
approval

Fork n

Run
CI

Create MR

Review from
Peer

Merge after
approval

In sync

...

...

...

...

U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

U
pd

at
e

w
it

h
re

vi
ew

How ?

