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Abstract—Given the trend of supercomputers accu-
mulating much of their compute power in GPU accel-
erators composed of thousands of cores and operating
in streaming mode, global synchronization points be-
come a bottleneck, severely confining the performance
of applications. In consequence, asynchronous meth-
ods breaking up the bulk-synchronous programming
model are becoming increasingly attractive. In this
paper, we study a GPU-focused asynchronous version
of the Restricted Additive Schwarz (RAS) method that
employs preconditioned Krylov subspace methods as
subdomain solvers. We analyze the method for various
parameters such as local solver tolerance and iteration
counts. Leveraging the multi-GPU architecture on
Summit, we show that these two-stage methods are
more memory and time efficient than asynchronous
RAS using direct solvers. We also demonstrate the su-
periority over synchronous counterparts, and present
results using one-sided CUDA-aware MPI on up to 36
NVIDIA V100 GPUs.

Index Terms—Asynchronous iterative methods,
Schwarz methods, GPUs, Krylov subspace solvers.

I. INTRODUCTION

One of the main challenges in the exascale era
is the need to move beyond the Bulk-Synchronous
Programming (BSP) model towards asynchronous
models to mitigate the effects of global synchro-
nization points in heterogeneous clusters. This is
reflected in the US Department of Energy listing the
removal of synchronization bottlenecks as one of
the programming challenges for the exascale era [1].
Many of the latest leadership HPC systems are
not only heterogeneous but also heavily imbalanced
towards accelerators. For example, each node of
Oak Ridge’s Summit supercomputer composes 2
POWER9 22-core CPUs and 6 Nvidia Tesla V100

GPUs, and the system’s 27,648 GPUs (in 4,608
nodes) contribute to 98% of Summit’s compute
power.

In consequence, new algorithms should be de-
signed keeping asynchronicity and fault tolerance
in mind, while making sure that the highly-parallel
nature of the accelerators is harnessed efficiently.
From a linear solver perspective, there are two
possible approaches. The first approach involves
improving the load balancing of the algorithms
and moving to more asynchronous programming
techniques such as task-based approaches. This
involves breaking up the algorithm into granular
tasks and intelligently scheduling them. The second
approach is to use asynchronous iterative methods.
While the first approach provides some performance
improvements, it may fail for some algorithms such
as the traditional iterative methods that compute in
a lock-step fashion and have synchronization points
boiled into the algorithm. Asynchronous iterative
methods, on the other hand, do not operate in
a lock-step fashion, but instead allow for using
the available data without explicitly synchronizing
all processes at every iteration. This removes the
bulk-synchronous character of the algorithm and
allows us to move to a more asynchronous model
where each process trades the global synchroniza-
tion against the price of possibly computing on old
data. Effectively, asynchronous iterative methods
allow to trade computation cost for synchronization
cost.

Previous works [2] (and references therein) have
explored the benefits asynchronous iterative meth-



ods can provide in terms of runtime performance,
and have proved their convergence from a theoret-
ical perspective. Schwarz methods are domain de-
composition methods and their asynchronous vari-
ants have been studied quite extensively [3](and
references therein). Yamazaki et al. [4] study an
asynchronous variant of the Schwarz method, the
Optimized Restricted Additive Schwarz solver for
a well-balanced Laplace 2D problem on multi-
core CPU systems. Nonetheless, few production-
ready implementations for HPC architectures and
comprehensive investigations of their performance
exist, in particular for machines featuring acceler-
ators such as the Summit HPC system. Previous
works [4] use direct solvers to solve the local
subdomain problems. With generic problems, this
is no longer efficient as the matrices no longer
have a banded structure, which renders the fac-
torization cost-prohibitive. Moreover, it is unneces-
sary to solve the local problems very accurately,
particularly in the early domain updates. Hence,
in this paper, we extend our Restricted Additive
Schwarz (RAS) framework [5], which uses local
direct solvers, to use iterative solvers for the local
subdomain problems and show that these multi-
stage iterative methods have significant advantages
over their single stage counterparts. Up to our
knowledge, this is novel work, and we hence high-
light the following contributions:

• We extend our previous open-source frame-
work, adding iterative solvers with precondi-
tioners for the local problems on GPUs.

• We show that multi-stage asynchronous iter-
ative methods can provide significant perfor-
mance improvements over synchronous meth-
ods and over the local direct solvers on modern
GPU-centric HPC systems. In particular, we
show that iterative methods adapt well to gen-
eral problems where the direct solvers become
too cost-prohibitive.

• We study the effects of different local itera-
tive solvers, preconditioners, local subdomain
solver tolerances, and iteration counts on two
different problems that are representative of ac-
tual simulations. We show that also when using
iterative local solvers, it is cost-prohibitive to

Figure 1: Decomposed 2-D grid with partitioning
and overlap. Inspired by Yamazaki et al. [4]

solve the subdomain problems to high accu-
racy.

In Section II, we first provide some background
on the traditional Restricted Additive Schwarz
method, asynchronous iterative methods, and the
implications of the non-reproducible execution in
asynchronous Additive Schwarz. In Section III, we
describe the new algorithm framework with its
capabilities, and the settings we use in the exper-
imental evaluation in Section IV. We conclude in
Section V.

II. BACKGROUND

A. Schwarz methods.

Schwarz methods are a class of domain de-
composition methods that were initially used as a
theoretical tool to show the existence of solutions
for the Laplace equation through the alternating
method. Since then, many variants of the method
have found their use, as iterative methods, e.g., [3]
(and references therein), and as preconditioners,
e.g., [6].

The general idea of domain decomposition (DD)
solvers is to decompose the domain into distinct
subsets so that the local solution for each of those
subdomains can be computed in parallel. To that
end, it is necessary to exchange data from each
other to converge towards a global solution in an
iterative process.

Consider a two-dimensional grid as shown in
Figure 1. The dotted grid lines show the partitioning
of the mesh into a 3x3 grid. The interior of one
domain is shown in blue. If all cells are part of
only one subdomain (i.e., no cells are part of two
adjacent subdomains), the DD method is called



a non-overlapping decomposition. If, for example,
the subdomain owning the blue cells includes also
the green cells as variables in the solution of the
local problem, then the DD method is called an
overlapping domain decomposition solver, in this
case with overlap of γ = 1. In this setting, the cells
marked red are the external interface points through
which the information is exchanged, also known as
the halo points.

In an overlapping Schwarz method, the values
for the cells in the overlap are computed by several
domains, and to form a unique global solution,
the different locally-computed values need to be
weighted [7]. With a modification proposed by Cai
and Sarkis [8], the cells in the overlap are still
considered as variables when computing the local
solution, but discarded afterward. This modification
– called Restricted Additive Schwarz (RAS) – con-
verges faster [8] with the advantage of removing
any need for weighting overlap solutions, therefore
allowing a collision-free implementation on parallel
computing architectures.

In a synchronous Schwarz solver, the iterations
proceed in a lock-step fashion: the domains are
decomposed as presented above, local solves are
performed in parallel, each subdomain sends the
required data to its “neighbors” and all the sub-
domains wait until data has been received from
their respective neighbors. Global convergence is
achieved when the global solution – computed after
all domains solved the local problems – satisfies a
pre-defined convergence criteria.

An asynchronous Schwarz solver removes the ex-
plicit synchronizations separating the iterations [3].
Instead, each subdomain proceeds by solving the
local problem using the latest data it received from
neighboring domains. This has several important
implications: 1) there is no longer a concept of
a single “global iteration count” as the distinct
subdomains can differ in how many local updates
they have completed; 2) local updates can poten-
tially re-compute the same solution in case no new
data was received; 3) the asynchronous Schwarz
convergence and performance is not reproducible as
– theoretically – each algorithm execution results in
a different subdomain update order and 4) the lack

of global synchronization points require alternative
strategies for detecting convergence of the algo-
rithm. Convergence for the asynchronous Schwarz
methods and their variants have been shown, for
example in [3] (and references therein).

B. Local solvers

As local solvers, we can either use a direct
solver after computing a Cholesky/LU factorization
of the matrix, or use iterative solvers such as Krylov
subspace methods, for example CG/GMRES with
or without preconditioners.

Direct solvers: For a symmetric positive definite
(SPD) matrix, a direct solver with Cholesky factor-
ization is the general choice. With a constant matrix,
direct methods are attractive as we need to compute
the expensive factorization only once and can use
the relatively cheap triangular solves to solve the
systems in the successive domain updates.

Iterative solvers: For a symmetric positive def-
inite (SPD) matrix, the most widely used itera-
tive solver is the preconditioned Conjugate Gra-
dient (PCG) method. For non-SPD systems, GM-
RES/BiCGSTAB methods are popular.

To minimize storage requirements, when using
a direct solver, it is imperative to reorder the ma-
trix using reordering methods such as METIS fill-
reduce, Approximate Minimum degree or others as
elaborated within CHOLMOD [9]. With unbalanced
matrices and matrices with large bandwidths, the
resulting fill-in can be prohibitive. This is not the
case for iterative solvers. Additionally, iterative sub-
domain solves come with the possibility to control
the local solution accuracy in favor of reduced sub-
domain solver cost. This is particularly attractive as
the local solution usually changes only marginally
between consecutive global updates, and a few local
solver iterations are often sufficient to update the
local solutions.

III. IMPLEMENTATION

The testbed framework we developed for asyn-
chronous iterative methods and published previ-
ously [5] is written in C++ and features a mod-
ern C++ design. The framework is designed for
customization and extension, and features multiple



options which can be tweaked or easily added to
explore the various techniques and concepts in the
context of asynchronous iterative methods.

At the core of the framework is the algorithm
detailed in Section III-A. This algorithm is generic
enough to be reused for other asynchronous it-
erative methods since it only calls different sub-
components, which are the Initialize interface
detailed in Section III-B and the Solve interface
detailed in Section III-C. The Communicate in-
terface, used in both the Initialize and the
Solve step, supports MPI one-sided and two-sided
communication and is detailed in Section III-D.

The framework we developed interacts with
external tools to provide specific functionali-
ties, among which are metis for partition-
ing, DEAL.II [10] for problem generation, and
GINKGO [11] for subdomain solvers and memory
management features as presented in Section III-E.

A. Core Algorithm

Algorithm 1 shows the Schwarz framework. The
initialization step handles the setup and initializa-
tion of the solver, while the solve step handles
the local solves, communication, the convergence
detection, and the termination of the solver. The
performance data we report in Section IV account
only for the solve step as the initialization and setup
is a constant, non-repeating part of the RAS solver.

Algorithm 1 Schwarz Iterative solver
1: procedure ITERATIVE SOLUTION(A, x, b)
2: procedure INITIALIZATION AND SETUP
3: Partition matrix
4: Distribute data
5: Initialize data
6: procedure SOLVE
7: while iter < max iter or until conver-

gence do
8: Locally solve the matrix
9: Exchange boundary information

10: Update boundary information
11: Check for Convergence
12: Gather the final solution vector

B. Initialization and setup

The initialization and setup step consists of three
main parts: 1. the generation and partitioning of the
global system matrix; 2. the distribution/generation
of the local subdomain matrices and right hand
sides; and 3. the setup of the communication –
which is detailed in Section III-D as it is a separate
component impacting both the initialization and the
solve characteristics.

1) Local subdomain matrices: The partitioning
scheme assigns each grid point to one ore more
subdomains (depending on the overlap setting). We
use the metis partitioning as it is the most generic
type of partitioning and performs well for different
matrices. Using this information, the local subdo-
main and interface matrices are assembled. The
latter is used to communicate between the different
subdomains using an SpMV formulation.

We store all the matrices in the CSR format,
which is a popular matrix format for handling sparse
matrices, and which has been shown to perform well
for a given generic matrix [12].

C. Solving

1) Local solution: Each subdomain owns its
local matrix and right-hand side, and can thus
independently and without synchronization with the
other subdomains solve the local problem. In this
paper, we focus on preconditioned Krylov solvers to
compute the local subdomain solution. For SPD ma-
trices, we use the Conjugate Gradient method and
for non-SPD matrices we use the GMRES method.
All solvers are taken from the GINKGO library and
have backends for GPUs. For the iterative local
solves, we use two preconditioner variants, a block-
Jacobi preconditioner based on (block-) diagonal
scaling, and an ILU preconditioner with the ILU
factors being generated through the PARILU algo-
rithm [13].

We compare the setting based on iterative sub-
domain solves with a version using direct subdo-
main solves. For the latter, we use factorizations
from the well-known CHOLMOD library [9] for
the Cholesky factorization (SPD problems) and the
UMFPACK library for the LU factorizations. As we
have constant factors, we pre-compute our factors



on the CPU in the setup stage and transfer the
factors to the GPU. For the triangular solves, we
use the cuSPARSE level-scheduled triangular solver
which has been shown to be very efficient [14].

The local subdomain update count refers to the
traditional “global iteration” count of the RAS
solver. Local iteration counts refer to the number
of iterations performed by the local iterative solver
in the subdomain.

2) Convergence detection: The framework we
develop supports two convergence detection strate-
gies: a centralized (tree-based) convergence detec-
tion mechanism and a decentralized strategy. We
have studied the effects of convergence detection
in a previous paper [5]. In this paper, we use the
decentralized convergence algorithm as it has been
shown to be scalable and better performing than the
centralized algorithms [5].

D. Communication

A subdomain refers to the computational unit
that performs a local solve and communicates the
required data to its “neighbors”. We use the CUDA-
aware MPI to directly transfer the buffers between
GPUs of different subdomains instead of interme-
diately staging them on the CPU. This allows for
faster communication as the latencies from the CPU
side are hidden (particularly for GPUs attached
to the same socket and communicating via the
CUDA NVLINK technology). We associate each
subdomain to one MPI rank.

Synchronous Schwarz setup: In the syn-
chronous version, each step in the SOLVE procedure
in Algorithm 1 is performed in a lock-step fashion.

Asynchronous Schwarz setup: In the asyn-
chronous version, each step in the SOLVE procedure
in Algorithm 1 is executed without synchronizing
with neighbors. This asynchronous communication
is enabled through the RMA functions of the MPI-2
standard. More details regarding the implementation
can be obtained from our previous paper [5] and
from our Open source implementation1.

1https://github.com/pratikvn/schwarz-lib

E. The GINKGO framework

GINKGO is a node-level high performance sparse
linear algebra library featuring kernels for back-
ends such as multicore machines (OpenMP), AMD
GPUs (HIP) and NVIDIA GPUs (CUDA). GINKGO
provides the user with simple and powerful linear
operator abstraction to interface various solvers,
preconditioners, and matrix operations. In the ex-
perimental analysis, we use GINKGO objects for
all arrays, matrices, and vectors. This enables us to
leverage GINKGO’s executor concept to easily move
data from one hardware architecture to another
without code other than using another execution
space. As we are focusing on the architecture of the
Summit supercomputer, we run on the V100 GPUs
using GINKGO’s CUDA executor and the multicore
executor for copies involving the host CPUs.

IV. EXPERIMENTAL ASSESSMENT

A. Hardware and software setup

In the experimental evaluation, we focus on two
problems. The first problem we focus on is a
Laplacian problem (2nd order FE) where we use
a preconditioned CG method as the local solver.
The second problem we focus on is an advection
problem (5th order FE) where we employ a pre-
conditioned GMRES method as the local solver.
For all cases, we iterate on the RAS level until the
global relative resnorm has dropped below a value
of 1e − 12 and the overlap is set to 8. The local
subdomain solver criterion in this paper refers to
the relative norm reduction, where we aim to reduce
the current resnorm of the current local solution and
not the absolute resnorm.

All experimental evaluation is realized on the
Summit supercomputer at the Oak Ridge National
Lab. Each node composes of two IBM Power 9
CPUs and 6 NVIDIA Tesla V100 GPUs. The 3
GPUs connected to the same socket are directly
connected by NVLINK bricks with a 50GB/s bi-
directional bandwidth. Each V100 features 16GB
of High Bandwidth Memory (HBM2) which is the
on-device memory. The nodes are connected via
a dual-rail EDR InfiniBand network (non-blocking
fat-tree) providing a bandwidth of 23GB/s.



This paper’s codebase uses GINKGO as a central
building block for the Schwarz solver. Overall,
local on-node (on-GPU) operations use GINKGO
functionality, while the inter-node and inter-GPU
communication is handled via MPI. As we perform
our experiments on the Summit system, we use
the IBM Spectrum MPI library (a flavor of Open-
MPI). Related work by Yamazaki et al [4] analyzes
the impact of using different MPI implementations
including the performance of the one-sided RMA
functions.

Investigating asynchronous iterative methods can
be challenging for several reasons. First, by the
nature of asynchronicity, the method is non-
deterministic, which means that we are generally
unable to predict or reproduce results and effects.
Therefore, we can only report statistical data and
draw weak assumptions. We acknowledge this as-
pect by averaging all data presented in this paper
over ten runs. Second, a global iteration count does
not bear any meaning. Removing explicit synchro-
nization points means that some solver parts (i.e.
subdomains) may have already completed a high
number of local updates while other parts did not
yet complete a single local update. To reflect this
challenge, we base all performance data we report
on the asynchronous Schwarz on averaged global
iterations or the time-to-solution metric. This is
the total time until global convergence is detected
– which brings us to a third challenge: without
global synchronization points, it is difficult to detect
global convergence. The framework we develop
supports both centralized and decentralized conver-
gence detection, but due to better performance and
scalability of the decentralized version, we use it
for all our experiments.

B. The Laplacian problem

Figure 2(a) visualizes the runtime needed for one
synchronous Schwarz iteration using two-sided MPI
communication and a block-Jacobi preconditioned
CG local solver averaged over all the subdomains
(problem with 2 million unknowns divided into 6
subdomains.). The local solve dominates the overall
runtime. As we increase the local solver iteration
limit (max-iter count), the global RAS solver needs

more domain updates to converge (as shown in the
inset domain update counts at the bottom of the
bars). At the same time, the local solver performs
fewer iterations, and hence the overall local solver
cost decreases. We see that for this configuration,
the overall time-to-solution is minimized for a local
solver iteration limit of 40.

Figure 3(a) shows the time to solution for the
different preconditioners (problem size of 2 million
unknowns divided over 6 subdomains). We observe
that independent of the preconditioner choice, the
asynchronous version completes faster than the syn-
chronous version. The default setting uses a local
stopping criterion of a relative residual threshold
of 1e − 6. We observe that the block-Jacobi pre-
conditioner is the most effective choice for this
problem, likely due to its low application cost.
Using a block-Jacobi preconditioned CG as local
solver, the asynchronous version outperforms the
synchronous version by about 1.25×.

(a) (b)

Figure 2: Studying the problem with a precondi-
tioned Krylov local solver. The runtime breakdown
in the different functions for different local solver
maximum iteration count. (Inset: Bottom of bars:
no. of subdomain updates, above the bars: total
time to solution in secs.) (a) Laplacian problem,
(b) Advection problem.

C. The Advection problem

Similar to Figure 2(a), Figure 2(b) visualizes the
runtime needed for one synchronous RAS iteration
using two-sided MPI communication with a block-
Jacobi preconditioned GMRES as local solver. The



runtimes are again averaged over all 6 subdomains,
each handling a subset of the 1.7 million unknowns.
The default case (with a tolerance of 1e-3) needs
about 729s to converge and is omitted in the graph
for readability. Furthermore, the system matrix is
much denser than the Laplacian case, and hence
the global solver spends more time in the boundary
exchange routine.

Figure 3(b) compares the performance of differ-
ent preconditioners. Though we expect the ILU pre-
conditioner to perform better for the non-symmetric
system matrix, we observe that the high precondi-
tioner quality does not compensate for the expensive
sparse triangular solves in the ILU preconditioner
application. In consequence, the block-Jacobi is
again the most efficient preconditioner. We also
observe that the asynchronous version outperforms
the synchronous counterpart in all settings, attaining
a maximum speedup of 1.4×.

(a) (b)

Figure 3: The time to solution for the different
preconditioners over different local solver maxi-
mum iteration counts (a) Laplacian problem, (b)
Advection problem.

D. Comparison with a local direct solver

In Figure 4(a), we assess the performance of the
asynchronous RAS solver using either a direct local
solver or an iterative local solver. For the direct local
solver, we initially compute the Cholesky factoriza-
tion of the local system matrix and apply triangular
solves in every subdomain update. For the iterative
local solver, we choose a Conjugate Gradient solver
(CG) preconditioned with block-Jacobi. The global
problem is composed of 2e5 unknowns partitioned

into 6 subdomains. The asynchronous RAS with a
direct subdomain solver needs on average 21 sub-
domain updates and completes after 2.05s. Using
60 iteration of the preconditioned CG, the local
solves are less accurate, and the average number of
subdomain updates increases to 27. However, while
the communication cost of every subdomain update
remains unaffected of the solver choice, the iterative
local solver completes (on average) 4× faster than
the direct local solver. In the end, the asynchronous
RAS using the iterative local solver completes in
0.63s, which is about 3.25× faster than the asyn-
chronous RAS using the direct local solver. Similar
behavior is observed for the advection problem in
Figure 4(b). The preconditioned GMRES is more
expensive than the PCG, but still about 1.54× faster
per subdomain update than the direct solve and
overall the asynchronous solver completes in 0.73s
while the synchronous version takes 1.05s which is
about 1.4× slower.

(a) (b)

Figure 4: Runtime breakdown of a single subdo-
main update (averaged) for the asynchronous RAS
solver (direct v/s iterative local solvers) (a) Lapla-
cian problem (b) Advection problem.

E. Analysis of the residual reduction.

Figure 5 shows the reduction of the residual
norm for the 36 subdomains and the number of
local iterations the local solver performs in each
of the global subdomain updates. Subdomains that
are ”slow” (subd-31, bottom figure) have relatively
more expensive local solves than the ones that
are faster (subd-0, top figure). An asynchronous
solver allows the faster subdomains to optimize



Figure 5: Reduction of the residual norm in the
subdomains and the number of local iterations per
subdomain with a max-iter count of 80 for the
Advection problem.

their local solves by reducing the iteration limit if
they have received less data from their neighbors
and are computing on old data. This is reflected
in the jumps of the residual norm. From a runtime
perspective, when subdomain 0 is performing its
85th global update, subdomain 31 is on its 50th
update. This local solver optimization in combina-
tion with the asynchronous communication allows
the asynchronous RAS solver to outperform the
synchronous version.

V. CONCLUSION AND FUTURE WORK

In this paper, we employ preconditioned Krylov
methods as iterative subdomain solvers in an asyn-
chronous Restricted Additive Schwarz (RAS) solver
designed for multi-GPU cluster. For SPD and non-
SPD problems, we analyze the effect of the subdo-
main solver iteration limit, and preconditioner type,
and compare convergence and performance against
a synchronous RAS method and an asynchronous
RAS using a direct subdomain solver. In the perfor-
mance study using up to 36 NVIDIA V100 GPUs,
we demonstrate that the asynchronous RAS solver
can for optimal parameter choices complete up to
1.4× faster than its synchronous counterpart and
more than 3.25× faster than the asynchronous RAS
solver using local direct solvers.

REFERENCES

[1] S. Amarasinghe, M. Hall, R. Lethin, K. Pingali, D. Quin-
lan, V. Sarkar, J. Shalf, R. Lucas, K. Yelick, P. Balanji et al.,

“Exascale programming challenges,” in Proceedings of the
Workshop on Exascale Programming Challenges, Marina
del Rey, CA, USA. US Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research
(ASCR), 2011.

[2] A. Frommer and D. B. Szyld, “On asynchronous itera-
tions,” Journal of Computational and Applied Mathemat-
ics, 2000.

[3] F. Magoulès, D. B. Szyld, and C. Venet, “Asynchronous
optimized schwarz methods with and without overlap,”
Numerische Mathematik, vol. 137, no. 1, pp. 199–227,
Sep 2017. [Online]. Available: https://doi.org/10.1007/
s00211-017-0872-z

[4] I. Yamazaki, E. Chow, A. Bouteiller, and J. Dongarra,
“Performance of asynchronous optimized Schwarz with
one-sided communication,” Parallel Computing, vol. 86,
pp. 66–81, 2019. [Online]. Available: https://doi.org/10.
1016/j.parco.2019.05.004

[5] P. Nayak, T. Cojean, and H. Anzt, “Evaluating
asynchronous schwarz solvers on GPUs,” The International
Journal of High Performance Computing Applications,
vol. 0, no. 0, p. 1094342020946814, 0. [Online]. Available:
https://doi.org/10.1177/1094342020946814

[6] Z. Liu and Y. He, “Restricted additive schwarz precondi-
tioner for elliptic equations with jump coefficients,” Ad-
vances in Applied Mathematics and Mechanics, vol. 8,
no. 6, pp. 1072–1083, 2016.

[7] A. Frommer and D. B. Szyld, “Weighted max norms,
splittings, and overlapping additive Schwarz iterations,”
Numerische Mathematik, vol. 83, pp. 259–278, 1999.

[8] X. C. Cai and M. Sarkis, “Restricted additive Schwarz
preconditioner for general sparse linear systems,” SIAM
Journal of Scientific Computing, 1999.

[9] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam,
“Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate,” ACM Trans. Math.
Softw., vol. 35, no. 3, Oct. 2008. [Online]. Available:
https://doi.org/10.1145/1391989.1391995

[10] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands,
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Artifact Description

In order to ensure reproducibility of results, we
provide the code used to obtain the results in this
paper and elaborate on the settings and parameters
used to produce these results.

Building instructions
The source code is open-source and available

on github (https://github.com/pratikvn/schwarz-lib).
The code is documented through doxygen and avail-
able online (https://pratikvn.github.io/schwarz-lib/
doc/develop/index.html)

To build schwarz-lib, the following compo-
nents are necessary:

1) An MPI implementation (OpenMPI, MPICH,
Spectrum-MPI etc.)

2) GINKGO: Linear operator algebra library for
the general framework.

Additionally, these components are necessary to
reproduce the results in this paper:

1) DEAL.II For running the laplacian and advec-
tion benchmarks.

2) SUITESPARSE: For the direct factorizations for
the local solvers.

3) METIS: For the matrix partitioning and domain
decomposition.

Dependencies
The following describes the dependencies and the

instructions to install them.
1) GINKGO: Detailed instructions on how to

build Ginkgo are provided in the GINKGO docu-
mentation in the README.md and the installation
page (INSTALL.md). The expt-develop branch
needs to checked out as schwarz-lib depends on that
branch of GINKGO.

To run the code on multiple GPU’s, GINKGO
needs to be compiled with the CMake option
GINKGO_BUILD_CUDA=on.

2) DEAL.II: To run the laplacian and advec-
tion examples, you need to compile DEAL.II from
the fork https://github.com/pratikvn/dealii using the
branch gko-expt-develop.

Instructions to compile DEAL.II are avail-
able on the DEAL.II website, https://www.dealii.

org/. As we do not use any CUDA im-
plementations from dealii, the CMake option
DEAL_II_WITH_CUDA can safely be switch off.
To make sure there are no duplicate MPI definitions
from DEAL.II, DEAL.II needs to be compiled with
the CMake option DEAL_II_WITH_MPI=ON. Ad-
ditionally, to make sure everything with Ginkgo
works smoothly, DEAL.II needs to be built
with GINKGO support using the CMake option
DEALII_WITH_GINKGO=on and the installation
path of GINKGO provided to DEAL.II with the
CMake option GINKGO_DIR.

3) Suitesparse - CHOLMOD and UMFPACK:
To run the direct solver comparisons, CHOLMOD
and UMFPACK of the Suitesparse collections need
to be installed. Installation instructions can be found
in the README of the github repository, https://
github.com/DrTimothyAldenDavis/SuiteSparse.

4) METIS: To partition the global matrix,
it is necessary to install a partitioner. We use
METIS http://glaros.dtc.umn.edu/gkhome/metis/
metis/overview. We also provide two other
naive partitioning for experimental purposes, the
regular-1d and the regular-2d, if the user
cannot install METIS for some reason.

Schwarz library
Finally, schwarz-lib can be compiled

with the previous dependencies as
necessary. To reproduce the results in this
paper, it is necessary to use the CMake
options SCHWARZ_BUILD_DEALII=on,
SCHWARZ_BUILD_CUDA=on,
SCHWARZ_BUILD_CHOLMOD=on
SCHWARZ_BUILD_UMFPACK=on and
SCHWARZ_BUILD_METIS=on. To compile the
benchmarks, it is necessary to also use the CMake
option SCHWARZ_BUILD_BENCHMARKING=on.
The installation paths of the respective libraries
need to be provided in the respective CMake
options LIBNAME_DIR as elaborated in the
installation documentation https://pratikvn.github.
io/schwarz-lib/doc/develop/install schwarz.html.

Benchmarking
The different flags available are explained

on the benchmarking documentation page:

https://github.com/pratikvn/schwarz-lib
https://pratikvn.github.io/schwarz-lib/doc/develop/index.html
https://pratikvn.github.io/schwarz-lib/doc/develop/index.html
https://github.com/pratikvn/dealii
https://www.dealii.org/
https://www.dealii.org/
https://github.com/DrTimothyAldenDavis/SuiteSparse
https://github.com/DrTimothyAldenDavis/SuiteSparse
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://pratikvn.github.io/schwarz-lib/doc/develop/install_schwarz.html
https://pratikvn.github.io/schwarz-lib/doc/develop/install_schwarz.html


https://pratikvn.github.io/schwarz-lib/doc/develop/
benchmarking schwarz.html.To reproduce the
results in this paper, the following flags have to be
set:

1) Generic settings:
a) Compile GINKGO, DEAL.II and SCHWARZ-

LIB in Release mode.
b) Set GINKGO executor to CUDA:

i) --executor=cuda

c) Set overlap to 8:
i) --overlap=8

d) Set partition to METIS:
i) --partition=metis

e) Set matrix type to non-symmetric for advec-
tion problem. [PARAMETER]:
i) --non_symmetric_matrix

2) Solver settings:
a) Generic settings:

i) Set the maximum iteration count to a
high value:
A) --num_iters=2000

ii) Set global solver tolerance to 1e-12.
A) --set_tol=1e-12

iii) Set local solver tolerance to
[PARAMETER]:
A) --local_tol=1e-3

b) Communication settings:
i) Enable MPI onesided or twosided as

required [PARAMETER]:
A) --enable_onesided=

true/false

ii) Set the MPI onesided remote communi-
cation type to get [PLATFORM-DEP]:
A) --remote_comm_type=get

iii) Set the lock type [PLATFORM-DEP]:
A) --lock_type=lock-all

iv) Set the flush type [PLATFORM-DEP]:
A) --flush_type=flush-local

c) Convergence settings:
i) Enable convergence checking for

twosided:

A) --enable_global_check

ii) Set onesided convergence check type:
A) --global_convergence_type=

decentralized

d) Local subdomain solver settings:
i) Set the local solver [PARAMETER]:

A) --local_solver=
iterative-ginkgo/direct-ginkgo

ii) Set the local solver max iteration count
[PARAMETER]:
A) --local_max_iters=100

iii) Set the local preconditioner
[PARAMETER]:
A) --local_precond=

block-jacobi/ilu/isai

The flags marked with [PARAMETER] are param-
eters that can be experimented with. The specific
parameter values are available in the paper. The
flags marked with [PLATFORM-DEP] are flags that
are platform dependent and hence the optimal val-
ues may differ on different platforms. We have pro-
vided the optimal values for the Summit platform.

Our setup
All our experiments were run on the Summit

supercomputer at Oak-Ridge National Laboratory,
US. Each node of Summit consists of 6 NVIDIA
V100 GPU’s connected to each other and the CPU
sockets with NVLINK bridges. We used the IBM
Spectrum MPI (v10.3.1.2) which is CUDA Aware.
gcc-7.4.0 was used as the host compiler and the
CUDA Toolkit 10.1.243 was used as the device
compiler.

At the time of our experiments Summit had
some problems with the transfer of large CUDA
buffers, particularly off-node for one-sided com-
munication with MPI_Get. An environment flag,
PAMI_CUDA_AWARE_THRESH needed to be set
to a high value to circumvent this at the cost of
performance. Additionally, MPI_Put was found to
have a bug and hence we had to resort to using
MPI_Get instead.

https://pratikvn.github.io/schwarz-lib/doc/develop/benchmarking_schwarz.html
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