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What are batched methods ? 

● Batching: Related but 
independent computations that 
can be scheduled in parallel.

● Are highly suitable for GPUs and 
processors with many parallel 
computing units.

● Can maximize utilization of the 
GPU, due to excellent scalability.
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Related work

● Usage in block-Jacobi preconditioners (Anzt. et.al PMAM 17)

● Batched BLAS interface (Dongarra et.al 2016)

● Dense triangular solves on GPUs, DGETRF (Dong et.al 2014)

● Tri-/Penta- diagonal banded solvers on GPUs (Carroll et.al 2021,  Gloster et.al 

2019, Valero-Lara et.al 2018)
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Iterative methods ? 

● To solve                 iteratively
● Richardson or similar fixed point methods

● Krylov subspace methods

● Examples: CG, BiCGSTAB, GMRES etc (Saad 2003) 

4

Different choices of the 
subspace        give rise to 
different methods



Why batched iterative methods ?

● Most current research and software focuses on dense and direct solvers.

● For medium sized problems, dense and/or direct methods run into 

memory issues.

● Very high accuracy not usually required. Iterative methods provide 

tunable accuracy.

● Some applications have matrices with relatively low condition numbers. 
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Challenges

● Memory bound nature of sparse iterative methods.

● Iterative methods usually have a lot of distinct kernels. Overhead of kernel 

launches can be significant.

● Explosion of parameters for iterative solvers requires attention to 

interface design.

● Balancing composability and flexibility can be difficult.

● Optimization of sparse matrix storage very important. 

● Independent convergence and stopping for each individual linear system.
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Opportunities

● Relatively cheap computational cost for small to medium sized problems.

● Tunable accuracy can improve overall time to solution.

● Shared sparsity pattern can allow for optimized storage and caching 

matrices in constant memory.

● Linear system solution inside a non-linear loop can make use of better 

initial guesses from previous iterations.

● Independent convergence and stopping for each individual linear system.
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XGC: A fusion plasma simulation using 

the Gyrokinetic particle in Cell 

method. 

Applications

Combustion simulation: PeleLM from 

the SUNDIALS suite.
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Ginkgo’s batched interface: Objectives

● Store one copy of the sparsity pattern and store the different values. 

● Provide different Sparse matrix formats to support different sparsity 

patterns.

● Provide a wide variety of solvers for both symmetric and non-symmetric 

problems.

● Fuse kernels to maximize cache usage and reduce kernel launch latency.

https://github.com/ginkgo-project/ginkgo/tree/batch-develop
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https://github.com/ginkgo-project/ginkgo/tree/batch-develop


Ginkgo’s batched interface: Design

● Sparse matrix formats: BatchCsr and BatchEll
● Iterative solvers: BatchBicgstab, BatchGmres, BatchCg, BatchIdr 

and BatchRichardson
● Preconditioners: BatchJacobi, BatchExactILU, BatchParILU, 

BatchIsai 

● Template the global apply kernel on logger, stopping criterion, matrix 
type and preconditioner type.

● Pre-configure dynamic shared memory based on problem size.
● Each problem solved on one thread block (But variants are WIP).
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Multi-level dispatch mechanism (host-side)
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● Host side dispatch and the solver 

kernel is templated.

● Matrix format is also templated.

● Allows for easy addition of new 

features and functionality and 

eases maintenance.



How does the interface look ? 
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How does the interface look ? 
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Optimization: Automatic shared memory config

● Red objects: Intermediate vectors in 

SpMV: High priority

● Blue objects: Other vectors: Low 

priority

● Green objects: Constant matrices or 

vectors (In constant cache)
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An Exact ILU(0) preconditioner
● In place factorization

● Updated in parallel over batch 

entries.

● One warp per row for coalesced 

access.

● Store the current row’s elements in 

shared memory.
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Batched ISAI algorithm

● Store sparsity pattern of the matrix 
or of the powers in cache. 

● Loop over all rows in entire batch.
● Assign subwarps to row.
● Extract matrix values into a vector 

and compute a direct solution.
● Triangular solve or general solve 

depending on type of matrix 
assembled.
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Batched triangular solvers

● Used in application of the preconditioners or for ILU based ISAI 

generation.

● Symbolic phase is sequential and computed on the host for one sparsity 

pattern.

● A busy wait based implementation inside each thread block.

● Avoids synchronization problems due to dependencies.
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Experimental setup and test cases

● 3 test cases.
○ Scaling with a 3 point Laplacian stencil problem

○ General matrices from Suitesparse.

○ Practical application problem from PeleLM

● On the HoreKa machine at the Karlsruhe Institute of Technology.
○ Each node has 4 A100 (40 GB) GPUs with 2 Intel Xeon Platinum 8368

○ Software setup: CUDA 11.4 and gcc-10 
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Test cases
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Significant reduction in iteration 
count

Sophisticated preconditioners 
necessary for some problems 



Scaling with a 3 point stencil

● Increase size of individual batch 

entries, fixed number of batch 

entries (20000)

● Dense direct method does not 

scale beyond 64 rows due to out 

of memory issues
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Scaling with a 3 point stencil

● Laplacian 3-pt stencil, each entry 

has 64 rows.

● Upto 40x speedup for modest 

number of batch entries

● Upto 1.5x speedup for very large 

number of batch entries.
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Iteration counts
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Time for generation
● Generation of the 

preconditioner can be 

significant, even if a one time 

cost.

● ILU(0) is expensive to generate.

● ParILU is cheaper can be less 

effective.

● ISAI can be a compromise 

between cost and effectiveness.
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Total solve time: generation (once) + application

● ILU(0) is the most robust and 
enables solution for all 
problems.

● ParILU can win in some 
cases due to cheaper 
generation.

● Scalar Jacobi can still be 
very effective despite large 
number of iterations.
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Are preconditioners useful ? The Isooctane problem

● Some variation in iteration counts in 
problems in a batch.

● Preconditioners can significantly 
reduce the iteration count.
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Conclusion and future work

● Batched iterative solvers have shown to be effective in a variety of cases.

● Batched preconditioners are necessary for more complex problems and 

can help in improving the performance further.

● ISAI currently only works for problems with num nonzeros per row < 32.

● ILU with ISAI, ISAI(k) and Block Jacobi preconditioners are work in 

progress and have shown promise
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Thank you!
Any questions ? 
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https://github.com/ginkgo-project/ginkgo

https://github.com/ginkgo-project/ginkgo


Why not Block Diagonal assembly ? 

● Need to wait for slowest problem; 

independent stopping is difficult.

● Eigenvalues of the monolithic 

problems union of the eigenvalues of 

the individual problems.
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