
Preconditioners for Batched
Iterative Linear Solvers on

GPUs
Isha Aggarwal, Pratik Nayak, Aditya Kashi, Hartwig Anzt

What are batched methods ?

● Batching: Related but
independent computations that
can be scheduled in parallel.

● Are highly suitable for GPUs and
processors with many parallel
computing units.

● Can maximize utilization of the
GPU, due to excellent scalability.

2

Related work

● Usage in block-Jacobi preconditioners (Anzt. et.al PMAM 17)

● Batched BLAS interface (Dongarra et.al 2016)

● Dense triangular solves on GPUs, DGETRF (Dong et.al 2014)

● Tri-/Penta- diagonal banded solvers on GPUs (Carroll et.al 2021, Gloster et.al

2019, Valero-Lara et.al 2018)

3

Iterative methods ?

● To solve iteratively
● Richardson or similar fixed point methods

● Krylov subspace methods

● Examples: CG, BiCGSTAB, GMRES etc (Saad 2003)

4

Different choices of the
subspace give rise to
different methods

Why batched iterative methods ?

● Most current research and software focuses on dense and direct solvers.

● For medium sized problems, dense and/or direct methods run into

memory issues.

● Very high accuracy not usually required. Iterative methods provide

tunable accuracy.

● Some applications have matrices with relatively low condition numbers.

5

Challenges

● Memory bound nature of sparse iterative methods.

● Iterative methods usually have a lot of distinct kernels. Overhead of kernel

launches can be significant.

● Explosion of parameters for iterative solvers requires attention to

interface design.

● Balancing composability and flexibility can be difficult.

● Optimization of sparse matrix storage very important.

● Independent convergence and stopping for each individual linear system.

6

Opportunities

● Relatively cheap computational cost for small to medium sized problems.

● Tunable accuracy can improve overall time to solution.

● Shared sparsity pattern can allow for optimized storage and caching

matrices in constant memory.

● Linear system solution inside a non-linear loop can make use of better

initial guesses from previous iterations.

● Independent convergence and stopping for each individual linear system.

7

XGC: A fusion plasma simulation using

the Gyrokinetic particle in Cell

method.

Applications

Combustion simulation: PeleLM from

the SUNDIALS suite.

8

Ginkgo’s batched interface: Objectives

● Store one copy of the sparsity pattern and store the different values.

● Provide different Sparse matrix formats to support different sparsity

patterns.

● Provide a wide variety of solvers for both symmetric and non-symmetric

problems.

● Fuse kernels to maximize cache usage and reduce kernel launch latency.

https://github.com/ginkgo-project/ginkgo/tree/batch-develop
9

https://github.com/ginkgo-project/ginkgo/tree/batch-develop

Ginkgo’s batched interface: Design

● Sparse matrix formats: BatchCsr and BatchEll
● Iterative solvers: BatchBicgstab, BatchGmres, BatchCg, BatchIdr

and BatchRichardson
● Preconditioners: BatchJacobi, BatchExactILU, BatchParILU,

BatchIsai

● Template the global apply kernel on logger, stopping criterion, matrix
type and preconditioner type.

● Pre-configure dynamic shared memory based on problem size.
● Each problem solved on one thread block (But variants are WIP).

10

Multi-level dispatch mechanism (host-side)

11

● Host side dispatch and the solver

kernel is templated.

● Matrix format is also templated.

● Allows for easy addition of new

features and functionality and

eases maintenance.

How does the interface look ?

12

How does the interface look ?

13

Optimization: Automatic shared memory config

● Red objects: Intermediate vectors in

SpMV: High priority

● Blue objects: Other vectors: Low

priority

● Green objects: Constant matrices or

vectors (In constant cache)

14

An Exact ILU(0) preconditioner
● In place factorization

● Updated in parallel over batch

entries.

● One warp per row for coalesced

access.

● Store the current row’s elements in

shared memory.

15

Batched ISAI algorithm

● Store sparsity pattern of the matrix
or of the powers in cache.

● Loop over all rows in entire batch.
● Assign subwarps to row.
● Extract matrix values into a vector

and compute a direct solution.
● Triangular solve or general solve

depending on type of matrix
assembled.

16

Batched triangular solvers

● Used in application of the preconditioners or for ILU based ISAI

generation.

● Symbolic phase is sequential and computed on the host for one sparsity

pattern.

● A busy wait based implementation inside each thread block.

● Avoids synchronization problems due to dependencies.

17

Experimental setup and test cases

● 3 test cases.
○ Scaling with a 3 point Laplacian stencil problem

○ General matrices from Suitesparse.

○ Practical application problem from PeleLM

● On the HoreKa machine at the Karlsruhe Institute of Technology.
○ Each node has 4 A100 (40 GB) GPUs with 2 Intel Xeon Platinum 8368

○ Software setup: CUDA 11.4 and gcc-10

18

Test cases

19

Significant reduction in iteration
count

Sophisticated preconditioners
necessary for some problems

Scaling with a 3 point stencil

● Increase size of individual batch

entries, fixed number of batch

entries (20000)

● Dense direct method does not

scale beyond 64 rows due to out

of memory issues

20

Scaling with a 3 point stencil

● Laplacian 3-pt stencil, each entry

has 64 rows.

● Upto 40x speedup for modest

number of batch entries

● Upto 1.5x speedup for very large

number of batch entries.

21

Iteration counts

22

Time for generation
● Generation of the

preconditioner can be

significant, even if a one time

cost.

● ILU(0) is expensive to generate.

● ParILU is cheaper can be less

effective.

● ISAI can be a compromise

between cost and effectiveness.

23

Total solve time: generation (once) + application

● ILU(0) is the most robust and
enables solution for all
problems.

● ParILU can win in some
cases due to cheaper
generation.

● Scalar Jacobi can still be
very effective despite large
number of iterations.

24

Are preconditioners useful ? The Isooctane problem

● Some variation in iteration counts in
problems in a batch.

● Preconditioners can significantly
reduce the iteration count.

25

Conclusion and future work

● Batched iterative solvers have shown to be effective in a variety of cases.

● Batched preconditioners are necessary for more complex problems and

can help in improving the performance further.

● ISAI currently only works for problems with num nonzeros per row < 32.

● ILU with ISAI, ISAI(k) and Block Jacobi preconditioners are work in

progress and have shown promise

26

Thank you!
Any questions ?

27

https://github.com/ginkgo-project/ginkgo

https://github.com/ginkgo-project/ginkgo

Why not Block Diagonal assembly ?

● Need to wait for slowest problem;

independent stopping is difficult.

● Eigenvalues of the monolithic

problems union of the eigenvalues of

the individual problems.

28

