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Objectives

1 Our objectives:

To Study two-stage asynchronous iterative algorithms for Exascale.

In particular, study multi-GPU, multi-node problems.

And provide a framework to test these algorithms for a wide variety of problems and

architectures.
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Motivation

3 / 25



Motivation Background Implementation and Experimentation Results Outlook

Begin of the Accelerator era

Figure: Computing trends
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Current and future computing trends
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Figure: Top 3 of the top 500

1 Frontier: AMD Epyc CPUs + AMD

Instinct GPUs ('1.5 EF, by 2021,

First Exascale system)

2 El Capitan: AMD Epyc CPUs +

AMD Instinct GPUs ('2 EF, by

2023)

3 Aurora: Intel Xeon + Intel Xe

GPUs (2021-2022)

4 Leonardo (EuroHPC): Intel CPU +

NVIDIA A100 GPUs (≈200 PF)

5 LUMI (EuroHPC): AMD Epyc

CPUs + AMD Instinct GPUs

(≈550 PF, by Q4 2021)
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Synchronous v/s Asynchronous models

1 Bulk synchronous model of parallel execution (Most algorithms today).

A known task graph.

Needs regular synchronization between processes.

Not feasible for large number of processes.
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Background
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Problem Formulation.

∂Ω

Ω

Figure: Generic Domain

Problem:

Lx = f in Ω; Bx = g on ∂Ω

Linear system:

Ax = f
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Schwarz methods

1 Initially used to prove convergence of the Poisson problem for general domains (Schwarz,

1870). Alternating method. Slow convergence.

2 Solve each subset(subdomain) independently and communicate between each ”iteration”.

3 Gained popularity with parallel computers.

10 / 25Source: ddm.org
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Restricted Additive Schwarz methods

An improvement of the parallel version of the Schwarz method for faster convergence.

Group unknowns into subsets:

xj = R̃jx , j = 1, ...,N

R̃j is the rectangular Restriction matrices which corresponds to a

non-overlapping decomposition.

Used widely as a preconditioner:

M−1RAS =
N∑
j

R̃T
j A−1j Rj

Restricted Additive Schwarz

Compute using the full overlapped sub-matrix, but update only your locally associated values.
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Source: Schematic inspired by Yamazaki et.al, 2019, doi:

10.1016/j.parco.2019.05.004
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Restricted Additive Schwarz methods

RAS:

xk+1
p = xkp +

N∑
j

R̃p(Rj f − (RjAR
T
j )−1Rjx

k)

Advantages:

1 Saves communication compared to Additive Schwarz.

2 Reduced subdomain update count compared to Additive Schwarz.

3 Collision free parallel implementation, free from weightings.
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Source: Efstathiou and Gander, 2003, doi:

10.1023/B:BITN.0000014563.33622.1d
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Asynchronous iterative methods

Asynchronous iteration:
x (s)(0) = x

(s)
0

x (s)(n + 1) =

R(s)
(
x (1)(τ

(s)
1 (n)), ..., x (p)(τ

(s)
p (n))

)
if s ∈ σ(n)

x (s)(n) if s /∈ σ(n)

(1)

where, s = 1, ..., p and p is the number of subdomains.

τ
(s)
j (n) is the delay function that represents the subdomain update number of the data from

subdomain j available at s at subdomain update number n.

σ(n) is the set of subdomains which update at subdomain update number n.

13 / 25Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z
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Necessary conditions for convergence

Necessary conditions ( not necessarily sufficient ):

1

∀s, j ∈ 1, ..., p,∀n ∈ N∗, τ (s)j (n) ≤ n (2)

States that the delay function cannot return future iterations.

2

∀s ∈ 1, ..., p,#{n ∈ N|s ∈ σ(n)} = +∞ (3)

States that no subdomain can stop updating its neighbors.

3

∀s, j ∈ 1, ..., p, lim
n→∞

τ
(s)
j (n)} = +∞ (4)

States that new data will eventually always be provided to the subdomain.

14 / 25Source: Magoules, et.al, doi: 10.1007/s00211-017-0872-z
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Implementation and Experimentation
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The RAS iterative solver.

Algorithm 1 RAS Iterative solver

1: procedure Iterative solution(A, x , b)

2: procedure Initialization

3: Partition matrix . objective based

4: Distribute data

5: Initialize data

6: procedure Solve

7: while (subd update count < max subd update count or until convergence) do

8: Locally solve the matrix . Iterative / direct

9: Exchange boundary information

10: Update boundary information

11: Check for Convergence . Decentralized

12: Gather the final solution vector and post-processing
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Experimentation Parameters

1 Everything implemented with Ginkgo.

2 Experiments performed on Summit, ORNL.

1 6 GPU’s per node, NVIDIA Tesla V100’s.

3 RDMA communication with MPI-onesided functions (IBM Spectrum MPI with CUDA

Aware).

4 Partitioning with METIS.

5 Global convergence detection is decentralized (leader election based ) (Bahi et.al, 2005).

6 Test problems:

1 3D Laplacian problem with 2nd order basis functions (deal.ii, example 6) (PCG)

2 2D Advection problem with 5th order basis functions (deal.ii, example 9) (PGMRES)

17 / 25Source: Bahi et.al, doi: 10.1109/TPDS.2005.2
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Experimentation Parameters

1 Global relative residual reduction goal: 1e-12

2 Local subdomain iteration count varies from 30 to default (def, a local relative residual

reduction goal of 1e-6)

3 Experiments run on upto 36 GPUs.

4 We compute final true residual norm (||r ||2 = ||b − Ax ||2) to verify correctness along with

comparing the solutions by visualization (for a token problem size)
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System configuration: Summit, ORNL
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Results
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Comparison with local direct solver - Time per subdomain update

(a) Laplacian problem (b) Advection problem

1 Communication time similar between direct and iterative solvers.

2 Local solve time is significantly lesser.

3 Advection problem (with preconditioned GMRES) is harder to solve.
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Controlling the local iteration criterion - Synchronous

(a) Laplacian problem (b) Advection problem

1 Optimal local iteration count depends on problem size.

2 Number of subdomain updates decreases with increasing local max-iter counts.

3 Local solver cost increases with increasing local max-iter counts.
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Preconditioner effects and comparisons with synchronous

(a) Laplacian problem (b) Advection problem

1 Asynchronous is better than synchronous in almost all cases.

2 Block-jacobi preconditioner seems to be the most efficient.

3 ILU(0) seems to be too expensive compared to its effectiveness.
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Outlook
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Summary and Future work

Summary

Asynchronous methods can improve the overall time to solution.

Two stage methods can be efficient, particularly in conjunction with asynchronous

communication.

Balancing local max-iteration count and global subdomain update count is essential with

multi-stage methods.

Future Work

Estimating error and convergence bounds for these multi-stage asynchronous methods.

Extension to multi-level Schwarz methods.
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