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Objectives

1 What our objectives are:

Study asynchronous iterative algorithm behaviour.

Use Schwarz methods as a test-bed due to the simplicity of the algorithm

In particular, study multi-GPU, multi-node problems.
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Motivation
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Motivation and Background

(a) Top 6 (b) Computing trends
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Motivation and Background

1 Bulk synchronous model of parallel execution (Most algorithms today).

A known task graph.

Needs regular synchronization between processes.

Not feasible for large number of processes.
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Back of the envelope.

1 Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory:

32GB.

2 What is the maximum size (number of rows) of a matrix that can be stored on the GPU

for computing its solution with a given right hand side?

3 Assume: CSR matrix storage format: Let N be the number of rows, nnz be the number of

non-zeros represented as σ ∗ N2, with σ as the sparsity factor. This is a conservative

estimate without consideration for the auxillary vectors. CSR stores two array of length of

nnz and one array with length N. For a solution, we need an additional N for right hand

side array and the solution array.

Total number of bytes:

num bytes = (8× N + 16× σN2) + 2× (8× N)

So to get the maximal number of rows solve:

16× σN2 + 24× N = 3.2× 1010
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Back of the envelope.

This gives

Table: Maximal number of rows.

Sparsity factor, σ Number of rows, N

0.02 3.2e5

0.002 1e6

0.0002 3e6

SuiteSparse-avg

Our case of Laplace

Similar calculation gives: stencil size/number of rows (For 5 point stencil ≈ 5/N)

Therefore, Laplace is an hard problem for Schwarz type solvers.

Source: Yu-Hsiang Tsai (Mike), KIT
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The Schwarz algorithm
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Iterative methods.

∂Ω

Ω

Figure: Generic Domain

Problem:

Lx = f in Ω; Bx = g on ∂Ω

Linear system:

Ax = f
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Iterative methods

Stationary iterative method:

xk+1 = Bxk + c

For convergence, ρ(B) < 1.
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Domain decomposition methods
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(b) Overlapping domains

Figure: Overlapping and non-overlapping domains
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Schwarz methods

1 Initially used to prove convergence of the Poisson problem for general domains (Schwarz,

1870). Slow convergence.

2 Gained popularity with parallel computers.

3 Solve each subset(subdomain) independently and communicate between each ”iteration”.

4 Restricted additive Schwarz methods: An improvement of the parallel version of the

Schwarz method for faster convergence.
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Restricted Additive Schwarz methods

Used widely as a preconditioner:

M−1
RAS =

N∑
j

R̃T
j A−1

j Rj

Group unknowns into subsets:

xj = R̃jx , j = 1, ...,N

R̃j is the rectangular Restriction matrices which corresponds to a non-overlapping

decomposition.

Restricted Additive Schwarz

Compute using the full overlapped sub-matrix, but update only your locally associated values.
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Restricted Additive Schwarz methods

RAS:

xk+1
p = xkp +

N∑
j

R̃p(Rj f − (RjAR
T
j )−1Rjx

k)

Advantages:

1 Saves communication compared to Additive Schwarz.

2 Reduced iteration count compared to Additive Schwarz.

Source: Why Restricted Additive Schwarz Converges Faster

than Additive Schwarz, Efstathiou and Gander, 2003

https://link.springer.com/article/10.1023/B:BITN.0000014563.33622.1d
https://link.springer.com/article/10.1023/B:BITN.0000014563.33622.1d
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Interlude 2
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The problem with Schwarz.

Source: Martin Gander, University of Geneva

https://calcul.math.cnrs.fr/attachments/spip/Documents/Ecoles/ET2011DD/MGander.pdf
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The problem with Schwarz - Fixes

Optimized schwarz

Allow for better exchange of information at the boundaries. Modify the interface exchange

from zeroth order function to a first order function.

Method loses generality, more complicated for general problems.

Coarse grid

Coarse grid preconditioning: Borrow idea of a coarse grid preconditioner from Multi-grid.

Source: Martin Gander, University of Geneva

https://calcul.math.cnrs.fr/attachments/spip/Documents/Ecoles/ET2011DD/MGander.pdf
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Implementation and Experimentation
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The Schwarz iterative solver.

Algorithm 1 Schwarz Iterative solver

1: procedure Iterative solution(A, x , b)

2: procedure Initialization

3: Partition matrix . 1D / objective based

4: Distribute data

5: Initialize data

6: procedure Solve

7: while iter < max iter or until convergence do

8: Locally solve the matrix . Iterative / direct

9: Exchange boundary information

10: Update boundary information

11: Check for Convergence . Centralized(Tree based)/Decentralized ...

12: Gather the final solution vector
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Experimentation Parameters

1 Everything implemented with Ginkgo.

2 Experiments performed on Summit, ORNL.

1 6 GPU’s per node, NVIDIA Tesla V100’s.

3 Global convergence is tree-based (Yamazaki et.al, 2019).

4 RDMA communication with MPI-onesided functions.

5 Partitioning with METIS / simple 1D.

6 Test problem: Laplace 5 point stencil.

Source: Performance of asynchronous optimized schwarz with

one-sided communication, Yamazaki et.al

https://doi.org/10.1016/j.parco.2019.05.004
https://doi.org/10.1016/j.parco.2019.05.004
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Results
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Asynchronous speedup
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Figure: Speedup of the asynchronous schwarz for different partitionings
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Effect of Partitioning
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Figure: Speedup of the METIS partitioning over Naive 1D partitioning.
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Effect of Partitioning: Communication patterns
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Figure: Split up of function timings - Naive 1D and Metis



Motivation Interlude The Schwarz algorithm Interlude 2 Implementation and Experimentation Results Backup

Effect of Partitioning: Communication patterns
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Figure: Split up of function timings - Naive 1D and Metis
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Effect of Overlap - METIS - Twosided
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Figure: Effect of overlap - METIS partitioning
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Effect of Overlap - Naive 1D - Twosided
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Figure: Effect of overlap - Naive 1D partitioning
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Summary and Future work

Summary

Asynchronous methods can improve the overall time to solution.

Communication pattern and load balancing are important factors.

The plain Schwarz method does not scale well, particularly with a regular 1D

communication setup.

Future Work

Extend the algorithm to Optimized Schwarz.

Use hybrid-CPU-GPU approach.

Event based communication for only periodic information transfer.
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Backup
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Asynchronous speedup - Zoomed in
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Figure: Speedup of the asynchronous schwarz for different partitionings
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Effect of Overlap - METIS - Onesided
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Figure: Effect of overlap - METIS partitioning
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Effect of Overlap - Naive 1D - Onesided
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Figure: Effect of overlap - Naive 1D partitioning
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