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What our objectives are:
m Study asynchronous iterative algorithm behaviour.
m Use Schwarz methods as a test-bed due to the simplicity of the algorithm

m In particular, study multi-GPU, multi-node problems.
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Motivation and Background
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Motivation and Background

Bulk synchronous model of parallel execution (Most algorithms today).

m A known task graph. Lol

Computation

m Needs regular synchronization between processes.

. Communication
m Not feasible for large number of processes.

Barrier

Synchronisation

Asynchronous model of execution (Where algorithms need to be).

m ldeally, no synchronization. -
m Feasible and possibly necessary for large number of processes. I ‘
m Possibly unknown task graph. EE’:‘]:;’“‘““"“ I/ N
Communication
Partial Synchronization model (A compromise, future work).
m Partially regular synchronization between processes.

m Might work for large number of processes.

m Partially known task graph.
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Back of the envelope.

Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory:
32GB.
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What is the maximum size (number of rows) of a matrix that can be stored on the GPU
for computing its solution with a given right hand side?
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Back of the envelope.

Consider the NVIDIA V100 GPU, current state of the art HPC GPU. Amount of memory:
32GB.

What is the maximum size (number of rows) of a matrix that can be stored on the GPU
for computing its solution with a given right hand side?

Assume: CSR matrix storage format: Let N be the number of rows, nnz be the number of
non-zeros represented as o * N2, with o as the sparsity factor. This is a conservative
estimate without consideration for the auxillary vectors. CSR stores two array of length of
nnz and one array with length N. For a solution, we need an additional N for right hand
side array and the solution array.

Total number of bytes:
num_bytes = (8 x N + 16 x aN?) +2 x (8 x N)

So to get the maximal number of rows solve:

16 x oN2 4+ 24 x N = 3.2 x 1010
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Back of the envelope.

This gives
Table: Maximal number of rows.
Sparsity factor, c | Number of rows, N
0.02 3.2eb
SuiteSparse-avg «——— 0.002 1e6
0.0002 3eb

Our case of Laplace

m Similar calculation gives: stencil_size/number of rows (For 5 point stencil =~ 5/N)
m Therefore, Laplace is an hard problem for Schwarz type solvers.

Source: Yu-Hsiang Tsai (Mike), KIT
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l[terative methods.

Q2

Figure: Generic Domain

Problem:
Lx = finS; Bx = g on 09

Linear system:
Ax =f



Motivation Interlude The Schwarz algorithm Interlude 2 Implementation and Experimentation Results Backup

[terative methods

Stationary iterative method:
xk = Bxk 4+ ¢

For convergence, p(B) < 1.
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Domain decomposition methods

(a) Non-overlapping domains (b) Overlapping domains

Figure: Overlapping and non-overlapping domains
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Schwarz methods

Initially used to prove convergence of the Poisson problem for general domains (Schwarz,
1870). Slow convergence.

Gained popularity with parallel computers.
Solve each subset(subdomain) independently and communicate between each "iteration”.

Restricted additive Schwarz methods: An improvement of the parallel version of the
Schwarz method for faster convergence.
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Restricted Additive Schwarz methods

Used widely as a preconditioner:

Group unknowns into subsets:

ﬁ’j is the rectangular Restriction matrices which corresponds to a non-overlapping
decomposition.

Restricted Additive Schwarz

Compute using the full overlapped sub-matrix, but update only your locally associated values.
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Restricted Additive Schwarz methods

RAS:

N
X =)+ YRR — (RART) T Rix¥)
J

Advantages:
Saves communication compared to Additive Schwarz.

Reduced iteration count compared to Additive Schwarz.

Source: Why Restricted Additive Schwarz Converges Faster
than Additive Schwarz, Efstathiou and Gander, 2003


https://link.springer.com/article/10.1023/B:BITN.0000014563.33622.1d
https://link.springer.com/article/10.1023/B:BITN.0000014563.33622.1d
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The problem with Schwarz.

Parallel Schwarz method with two subdomains

Parallel Schwarz method with sixteen subdomains

Y -

Source: Martin Gander, University of Geneva

989000300000
M‘W«m i



https://calcul.math.cnrs.fr/attachments/spip/Documents/Ecoles/ET2011DD/MGander.pdf
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The problem with Schwarz - Fixes

Optimized schwarz

m Allow for better exchange of information at the boundaries. Modify the interface exchange
from zeroth order function to a first order function.
m Method loses generality, more complicated for general problems.

m Coarse grid preconditioning: Borrow idea of a coarse grid preconditioner from Multi-grid.

Source: Martin Gander, University of Geneva


https://calcul.math.cnrs.fr/attachments/spip/Documents/Ecoles/ET2011DD/MGander.pdf
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The Schwarz iterative solver.

Algorithm 1 Schwarz lterative solver

1: procedure ITERATIVE SOLUTION(A, x, b)
procedure INITIALIZATION
3 Partition matrix > 1D / objective based
4 Distribute data
5 Initialize data
6: procedure SOLVE
7
8
9

N

while iter < max_iter or until convergence do
Locally solve the matrix > lterative / direct
Exchange boundary information
10: Update boundary information
11: Check for Convergence > Centralized(Tree based)/Decentralized ...

12: Gather the final solution vector
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Experimentation Parameters

| ¢

Everything implemented with Ginkgo.

=

B Experiments performed on Summit, ORNL.

1
[ _J
6 GPU'’s per node, NVIDIA Tesla V100's. ‘ ln go

N

Global convergence is tree-based (Yamazaki et.al, 2019).
RDMA communication with MPl-onesided functions.
Partitioning with METIS / simple 1D.

[@ Test problem: Laplace 5 point stencil.

Source: Performance of asynchronous optimized schwarz with
one-sided communication, Yamazaki et.al


https://doi.org/10.1016/j.parco.2019.05.004
https://doi.org/10.1016/j.parco.2019.05.004
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Asynchronous speedup
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Figure: Speedup of the asynchronous schwarz for different partitionings
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Effect of Partitioning
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Figure: Speedup of the METIS partitioning over Naive 1D partitioning.



s
: <
i &
& [e0)
= —
5 ) =
i c
g aru ©
H
8 -
©
o
c
M O
o =
8 ©
o ©
c
=
N £
< )
H O
| C N
H .S
c
e =
> 9
t ©
4 (T
‘Il =
‘™ 5 5 5 3 58 3
(@) o =} I=} =} = =}
S (s) uoneust sad swi |
L
(-
LLl

Subdomain

Subdomain

(b) Naive 1D

(a) Metis
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Effect of Partitioning: Communication patterns

EERES

(a) Metis (b) Naive 1D

Figure: Split up of function timings - Naive 1D and Metis
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Effect of Overlap - METIS - Twosided
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Figure: Effect of overlap - METIS partitioning
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Motivation Interlude The Schwarz algorithm
Effect of Overlap - Naive 1D - Twosided
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Summary and Future work

m Asynchronous methods can improve the overall time to solution.

m Communication pattern and load balancing are important factors.

m The plain Schwarz method does not scale well, particularly with a regular 1D
communication setup.

m Extend the algorithm to Optimized Schwarz.
m Use hybrid-CPU-GPU approach.
m Event based communication for only periodic information transfer.
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Asynchronous speedup - Zoomed in
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Figure: Speedup of the asynchronous schwarz for different partitionings
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Effect of Overlap - METIS - Onesided
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Figure: Effect of overlap - METIS partitioning
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Effect of Overlap - Naive 1D - Onesided
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Figure: Effect of overlap - Naive 1D partitioning
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