

Joint Workshop: MathSEE-KCETA

Numerical methods for High Performance Computing

Pratik Nayak

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Fixed Point Numerics for Exascale (FiNE)

Hartwig Anzt

Isha Aggarwal

Rached Chaben

Terry Cojean

Vasileios Georgiou

Fritz Göbel

Thomas Grützmacher

Claudius Holeksa

Marcel Koch

Stefano Maurogiovanni

Pratik Nayak

Tobias Ribizel

Yu-Hsiang Tsai

Outline

- The HPC landscape
- Ginkgo A high performance numerical linear algebra library.
- Application 1: MFEM
- Application 2: OpenFOAM
- Application 3: Combustion simulations with PeleLM
- Application 4: Fusion plasma simulations with XGC.
- Conclusions.

The High Performance Computing (HPC) Landscape

- A first exascale system, Frontier (1.1 EFlops).
- European system in top 3, LUMI with 151 PFlops.
- All systems aiming for efficiency use some form of accelerators.

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942
4	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438 4

The High Performance Computing (HPC) Landscape

DOE HPC Roadmap to Exascale Systems

Dongarra et.al May 2022 Tech report ICL-UT-22-05

What is the performance distribution ? (GPUs v/s CPUs)

- Consider 1 node of Summit (6 GPUs and 2 sockets of IBM Power 9 with a total of 44 cores)
- Peak Flop of 6 V100 GPU is 40 TFlops. Peak Flop of 2 sockets of IBM Power 9 CPUs is 0.9 TFlops.
- **98%** of the performance on a node is in the GPUs. **Extremely critical** to design implementations and algorithms that work well on GPUs and multi-GPUs.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

The Ginkgo software library.

- Focus on high performance sparse linear algebra.
- Thoroughly tested and benchmarked.
- Linear solvers, matrix formats, preconditioners and more.
- Support for multiple backends: CUDA, HIP, DPC++ and OpenMP.

Library core contains architectureagnostic algorithm implementation

Runtime polymorphism selects the right kernel depending on the target architecture

Architecture-specific kernels execute the algorithm on target architecture

CORE Library Infrastructure Algorithm Implementations Iterative Solvers Preconditioners

Ginkgo: Current features

	Functionality	OMP	CUDA	HIP	DPC++	Local parallelization strategy	Local algorithmic approach
<u>.</u>	SpMV	Ø	Ś	\bigotimes	Ś	Thread-to-nonzero,	
3asi	SpMM	Ø	Ś	Ø	Ś	thread-to-row mapping	Mixed precision support
	SpGeMM	Ś	Ś	Ø	Ś	subwarp-to-row mapping	
Ś	BiCG	Ø	Ś	ø	Ś	Γ.	
ver	BICGSTAB	Ø	Ø	Ś	Ś		
sol	CG	Ø	Ø	Ś	Ø	Thread-to-row	Merged kernels
lov	CGS	Ø	Ś	Ś	Ś	mapping	0
Kry	GMRES	Ø	Ø	Ś	Ø		
	IDR	Ø	Ś	Ø	Ø		
ຽ	(Block-)Jacobi	Ś	Ś	Ø		subwarp to blocks	Advanced Mixed precision
Inel	ILU/IC		Ś	Ø		Subwarp-to-row mapping	Support
litic	Parallel ILU/IC	ø	Ś	Ś		Thread-to-nonzero mapping	Asynchronous Fix-point based
onc	Parallel ILUT/ICT	Ø	Ø	Ś		Initial to Horizero Inapping	
rec	Sparse Approximate Inverse	ø	Ś	Ś		Subwarp-to-row mapping	
₽.	Algebraic Multigrid	Ø	Ø	ø		Composes of other routines	
ed	Batched BiCGSTAB	Ś	Ś	Ø			
tch	Batched CG	Ś	Ś	Ø		Thread-block to	kernel-inlining & single-kernel
Ba	Batched GMRES		Ø	Ø		problem mapping	accesses

EXASCALE COMPUTING PROJECT

Single GPU applications

Application 1: MFEM: Poisson equation $-\Delta u = 1$

						1
				problem	sıze	nonzero elements
				beam (-o2 -l3)	37,281	$21,\!67,\!425$
			beam (-o3 -l3)*	$120,\!625$	14,070,001	
			beam (-o4 -l3)	279,873	$57,\!251,\!713$	
			matrices in MFEM	beam (-o3 -l4)	924,385	$111,\!573,\!601$
			integration test	L-shape (-o3 -l7)*	443,905	11,066,881
	Ginkgo			L-shape (-o3 -l8)	1,772,545	$44,\!252,\!161$
			L-shape (-o4 -l7)	788,481	28,323,841	
			L-shape (-o4 -l8)	3,149,825	$113,\!270,\!785$	

Application 1: MFEM, Multigrid and mixed precision

Application 1: MFEM, Multigrid and mixed precision

Application 2: OpenFOAM

Application 2.1 : OpenFOAM (Lid driven cavity) $Open\nabla FOAM = OGL^{1}$

DoFs	1e6 to 25e6
Application	icoFoam
Solver, p	CG, DIC
Solver, U	BiCGStab, DILU

Application 2.1 : OpenFOAM (Lid driven cavity)

Open∇FOAM® + **Arrow** Ginkgo

Single GPU speedup (HIP (MI100) and CUDA (V100)) over CPUs, AMD (32 cores and Intel (76 cores) resp.

Poisson solver times with different preconditioners (AMD MI100 and AMD CPU, 32 ranks)

OGL¹

Multi-GPU and distributed

16

Application 2.2 : OpenFOAM (Motorcycle) OpenVFOAM® + Ginkgo = OGL¹

DoF	n*8.678M
Application	simpleFoam
Outer iterations	500
Solver, p	CG
Solver, U	BiCGStab

Application 2.2 : OpenFOAM (Motorcycle)

CG speedup with distributed Schwarz preconditioner with ISAI (left), and Multigrid (right) on MI100s versus 32 MPI ranks on an AMD EPYC 7302 with an IC preconditioner.

EXASCALE COMPUTING PROJECT

Batched methods

Batched solvers in Ginkgo

- Batching: <u>Independent</u> computations that can be <u>scheduled in parallel</u>.
- Are highly suitable for GPUs and processors with many parallel computing units.
- Can maximize utilization of the GPU, due to excellent scalability.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Application 3: Combustion simulations

- PeleLM is a parallel, adaptive mesh refinement (AMR) code that solves the Navier-Stokes equations with in the low Mach number regime with the chemical reaction mechanisms.
- <u>https://amrex-combustion.github.io/PeleLM/ov</u>
 <u>erview.html</u>

Problem	Size	Non-zeros (A)	Non-zeros (L+U)
dodecane_lu	54	2,332 (80%)	2,754 (94%)
drm19	22	438 (90%)	442 (91%)
gri12	33	978 (90%)	1,018 (93%)
gri30	54	2,560 (88%)	2,860 (98%)
isooctane	144	6,135 (30%)	20,307 (98%)
lidryer	10	91 (91%)	91 (91%)

Application 3: Combustion simulations

Batched Sparse Iterative Solvers for Computational Chemistry Simulations on GPUs, ScalA 2021, SC21, Aggarwal, Kashi, Nayak, Balos, Woodward and Anzt.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Application 4: Fusion plasma simulations

<u>XGC</u> is a gyrokinetic particle-in-cell code, which specializes in the simulation of the edge region of magnetically confined thermonuclear fusion plasma. The simulation domain can include the magnetic separatrix, magnetic axis and the biased material wall. XGC can run in total-delta-f, and conventional delta-f mode. The ion species are always gyrokinetic except for ETG simulation. Electrons can be adiabatic, massless fluid, drift-kinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general_info.html

- Two species
- Ions easy to solve
- Electrons hard to solve
- Banded matrix structure
- Non-symmetric, need BiCGSTAB
- n = ~1,000
- nz = ~9,000

Application 4: Fusion plasma simulations

Batched Iterative solvers on GPUs for Fusion Plasma simulations, IPDPS 2022 Kashi, Nayak, Kulkarni, Lin and Anzt.

Outlook

- Efficient usage of GPUs is crucial in the path to Exascale.
- Ginkgo provides high performance implementations of many algorithms and we have shown good performance for a variety of applications.
- Distributed functionality in Ginkgo is bleeding edge, but has shown good scaling and performance.
- More mixed-precision functionality is being investigated (SpMVs, solvers and preconditioners)
- A fully GPU enabled sparse direct solver will also be available soon in Ginkgo.

Thank you! pratik.nayak@kit.edu

https://github.com/ginkgo-project/ginkgo

EXASCALE COMPUTING PROJECT

Bonus

Application 4: Fusion plasma simulations

Application 1: Finite element library interfaces.

Example: Speeding up MFEM's "example 22" (damped harmonic oscillator) on NVIDIA and AMD GPUs $-\nabla \cdot (a\nabla u) - \omega^2 bu + i\omega cu = 0$

MFEM Finite element library

preconditioner p

Solver cost breakdown

init precond gko solve

overhead

update host matrix retrieve results

Application 2.3 : OpenFOAM (Nasal cavity) Open∇FOAM® + **Arrow** Ginkgo OGL¹

1.0 2.5 0.8 0.6 0.4 0.5 0.2 0.0 0.0 ISAI В Π Multigrid SAI З B rid

Total application speedup on one node with 4 GPUs

Airflow inside a human nose

The High Performance Computing (HPC) Landscape

System	Titan (2012)	Summit (2017)	Frontier (2021)
Peak	27 PF	200 PF	2 EF
# nodes	18,688	4,608	9,408
Node	1 AMD Opteron CPU 1 NVIDIA Kepler GPU	2 IBM POWER9™ CPUs 6 NVIDIA Volta GPUs	1 AMD EPYC CPU 4 AMD Radeon Instinct GPUs
Memory	0.6 PB DDR3 + 0.1 PB GDDR	2.4 PB DDR4 + 0.4 HBM + 7.4 PB On-node storage	4.6 PB DDR4 + 4.6 PB HBM2e + 36 PB On-node storage, 66 TB/s Read 62 TB/s Write
On-node interconnect	PCI Gen2 No coherence across the node	NVIDIA NVLINK Coherent memory across the node	AMD Infinity Fabric Coherent memory across the node
System Interconnect	Cray Gemini network 6.4 GB/s	Mellanox Dual-port EDR IB 25 GB/s	Four-port Slingshot network 100 GB/s
Topology	3D Torus	Non-blocking Fat Tree	Dragonfly
Storage	32 PB, 1 TB/s, Lustre Filesystem	250 PB, 2.5 TB/s, IBM Spectrum Scale™ with GPFS™	695 PB HDD+11 PB Flash Performance Tier, 9.4 TB/s and 10 PB Metadata Flash. Lustre
Power	9 MW	13 MW	29 MW

Dongarra et.al May 2022 Tech report ICL-UT-22-05

The High Performance Computing (HPC) Landscape

Dongarra et.al May 2022 Tech report ICL-UT-22-05

Read and writes significantly more expensive !

Abdelfattah et.al Sep 2021 Tech report LLNL-JRNL-826451