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Fixed Point Numerics for Exascale (FiNE)
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Outline

● The HPC landscape

● Ginkgo - A high performance numerical linear algebra library.

● Application 1: MFEM

● Application 2: OpenFOAM

● Application 3: Combustion simulations with PeleLM

● Application 4: Fusion plasma simulations with XGC.

● Conclusions.
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The High Performance Computing (HPC) Landscape 

● A first exascale system, Frontier 
(1.1 EFlops).

● European system in top 3, LUMI 
with 151 PFlops.

● All systems aiming for 
efficiency use some form of 
accelerators.
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The High Performance Computing (HPC) Landscape 

Dongarra et.al May 2022 Tech report ICL-UT-22-05 5



What is the performance distribution ? (GPUs v/s CPUs)

Dongarra et.al May 2022 Tech report ICL-UT-22-05

● Consider 1 node of Summit (6 GPUs and 2 sockets of IBM Power 9 with a 
total of 44 cores)

● Peak Flop of 6 V100 GPU is 40 TFlops. Peak Flop of 2 sockets of IBM 
Power 9 CPUs is  0.9 TFlops. 

● 98% of the performance on a node is in the GPUs. Extremely critical to 
design implementations and algorithms that work well on GPUs and 
multi-GPUs.
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The Ginkgo software library.

● Focus on high 
performance sparse 
linear algebra.

● Thoroughly tested 
and benchmarked.

● Linear solvers, 
matrix formats, 
preconditioners and 
more.

● Support for multiple 
backends: CUDA, 
HIP, DPC++ and 
OpenMP.
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Ginkgo: Current features

Thread-to-row 
mapping

Thread-to-nonzero mapping 

Composes of other routines

Thread-block to 
problem mapping

Thread-to-nonzero, 
subwarp-to-row, or 
thread-to-row mapping Mixed precision support

Asynchronous Fix-point based

kernel-inlining & single-kernel 
design to avoid global memory 
accesses

Local parallelization strategy Local algorithmic approach

Subwarp-to-row mapping

Merged kernels

subwarp-to-row mapping

Subwarp-to-row mapping
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subwarp to blocks
Advanced Mixed precision 
support



Single GPU applications
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Application 1: MFEM: Poisson equation
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Application 1: MFEM, Multigrid and mixed precision
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high precision

low precision



Application 1: MFEM, Multigrid and mixed precision
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Application 2: OpenFOAM
+ = OGL¹

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

LDU 
conversion 
and update

Device 
Persistency

Solver and 
precond. 
wrapper

OGL

GPU stopping 
criterion 
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https://github.com/hpsim/OGL


Application 2.1 : OpenFOAM (Lid driven cavity)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

DoFs 1e6 to 25e6
Application icoFoam

Solver, p CG, DIC

Solver, U BiCGStab, DILU
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+ = OGL¹

https://github.com/hpsim/OGL


Application 2.1 : OpenFOAM (Lid driven cavity)

Single GPU speedup (HIP (MI100) and CUDA (V100)) 
over CPUs, AMD (32 cores and Intel (76 cores) resp. 

Poisson solver times with different preconditioners (AMD MI100 
and AMD CPU, 32 ranks)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL
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+ = OGL¹

https://github.com/hpsim/OGL


Multi-GPU and distributed
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Application 2.2 : OpenFOAM (Motorcycle)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

Case DoFs
Small 8.678M
Medium 17.356M
Large 26.034M

DoF n*8.678M

Application simpleFoam

Outer iterations 500

Solver, p CG

Solver, U BiCGStab
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+ = OGL¹

https://github.com/hpsim/OGL


Application 2.2 : OpenFOAM (Motorcycle)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

CG speedup with distributed Schwarz preconditioner with ISAI (left), and Multigrid (right) on MI100s versus 32 MPI 
ranks on an AMD EPYC 7302 with an IC preconditioner.
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+ = OGL¹

https://github.com/hpsim/OGL


Batched methods
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Batched solvers in Ginkgo
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● Batching: Independent 

computations that can be 

scheduled in parallel.

● Are highly suitable for GPUs and 

processors with many parallel 

computing units.

● Can maximize utilization of the 

GPU, due to excellent scalability.



Application 3: Combustion simulations
● PeleLM is a parallel, adaptive mesh refinement 

(AMR) code that solves the Navier-Stokes 
equations with in the low Mach number regime 
with the chemical reaction mechanisms. 

● https://amrex-combustion.github.io/PeleLM/ov
erview.html
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https://amrex-combustion.github.io/PeleLM/overview.html
https://amrex-combustion.github.io/PeleLM/overview.html


Application 3: Combustion simulations

Speedups in production code may be larger:
• Use of “suitable” initial guess (last linear solve);
• Less accurate solution often sufficient;
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Batched Sparse Iterative Solvers for Computational Chemistry Simulations on GPUs, ScalA 2021, SC21, 

Aggarwal, Kashi, Nayak, Balos, Woodward and Anzt.



Application 4: Fusion plasma simulations
XGC is a gyrokinetic particle-in-cell code, which 
specializes in the simulation of the edge region of 
magnetically confined thermonuclear fusion plasma. 
The simulation domain can include the magnetic 
separatrix, magnetic axis and the biased material 
wall. XGC can run in total-delta-f, and conventional 
delta-f mode. The ion species are always gyrokinetic 
except for ETG simulation. Electrons can be adiabatic, 
massless fluid, drift-kinetic, or gyrokinetic.
Source: https://xgc.pppl.gov/html/general_info.html

• Two species
• Ions easy to solve
• Electrons hard to solve
• Banded matrix structure
• Non-symmetric, need BiCGSTAB
• n = ~1,000
• nz =  ~9,000 23

https://theory.pppl.gov/research/research.php?rid=10#h34
https://xgc.pppl.gov/html/general_info.html


Application 4: Fusion plasma simulations

24
Batched Iterative solvers on GPUs for Fusion Plasma simulations, IPDPS 2022

Kashi, Nayak, Kulkarni, Lin and Anzt.



Outlook

● Efficient usage of GPUs is crucial in the path to Exascale.
● Ginkgo provides high performance implementations of many algorithms 

and we have shown good performance for a variety of applications.
● Distributed functionality in Ginkgo is bleeding edge, but has shown good 

scaling and performance.
● More mixed-precision functionality is being investigated (SpMVs, solvers 

and preconditioners)
● A fully GPU enabled sparse direct solver will also be available soon in 

Ginkgo.
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Thank you!
pratik.nayak@kit.edu
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https://github.com/ginkgo-project/ginkgo

mailto:pratik.nayak@kit.edu
https://github.com/ginkgo-project/ginkgo


Bonus
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Application 4: Fusion plasma simulations
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Application 1: Finite element library interfaces.
Example: Speeding up MFEM’s “example 22” (damped harmonic oscillator) on NVIDIA and 
AMD GPUs

MFEM
Finite 

element 
library
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Application 2.3 : OpenFOAM (Nasal cavity)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

Airflow inside a human nose

Total application speedup 
on one node with 4 GPUs Solver cost breakdown
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+ = OGL¹

https://github.com/hpsim/OGL
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The High Performance Computing (HPC) Landscape 
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Read and writes significantly more expensive !

Abdelfattah et.al Sep 2021 Tech report LLNL-JRNL-826451 33


