
Numerical methods for High
Performance Computing

Pratik Nayak

Joint Workshop: MathSEE-KCETA

Fixed Point Numerics for Exascale (FiNE)

2

Hartwig Anzt Isha Aggarwal Rached
Chaben Terry Cojean

Vasileios
Georgiou Fritz Göbel Thomas

Grützmacher
Claudius
Holeksa

Marcel Koch Stefano
Maurogiovanni Pratik Nayak Gregor Olenik Tobias Ribizel Yu-Hsiang Tsai

Outline

● The HPC landscape

● Ginkgo - A high performance numerical linear algebra library.

● Application 1: MFEM

● Application 2: OpenFOAM

● Application 3: Combustion simulations with PeleLM

● Application 4: Fusion plasma simulations with XGC.

● Conclusions.

3

The High Performance Computing (HPC) Landscape

● A first exascale system, Frontier
(1.1 EFlops).

● European system in top 3, LUMI
with 151 PFlops.

● All systems aiming for
efficiency use some form of
accelerators.

4

The High Performance Computing (HPC) Landscape

Dongarra et.al May 2022 Tech report ICL-UT-22-05 5

What is the performance distribution ? (GPUs v/s CPUs)

Dongarra et.al May 2022 Tech report ICL-UT-22-05

● Consider 1 node of Summit (6 GPUs and 2 sockets of IBM Power 9 with a
total of 44 cores)

● Peak Flop of 6 V100 GPU is 40 TFlops. Peak Flop of 2 sockets of IBM
Power 9 CPUs is 0.9 TFlops.

● 98% of the performance on a node is in the GPUs. Extremely critical to
design implementations and algorithms that work well on GPUs and
multi-GPUs.

6

The Ginkgo software library.

● Focus on high
performance sparse
linear algebra.

● Thoroughly tested
and benchmarked.

● Linear solvers,
matrix formats,
preconditioners and
more.

● Support for multiple
backends: CUDA,
HIP, DPC++ and
OpenMP.

7

Ginkgo: Current features

Thread-to-row
mapping

Thread-to-nonzero mapping

Composes of other routines

Thread-block to
problem mapping

Thread-to-nonzero,
subwarp-to-row, or
thread-to-row mapping Mixed precision support

Asynchronous Fix-point based

kernel-inlining & single-kernel
design to avoid global memory
accesses

Local parallelization strategy Local algorithmic approach

Subwarp-to-row mapping

Merged kernels

subwarp-to-row mapping

Subwarp-to-row mapping

8

subwarp to blocks
Advanced Mixed precision
support

Single GPU applications

9

Application 1: MFEM: Poisson equation

10

Application 1: MFEM, Multigrid and mixed precision

11

high precision

low precision

Application 1: MFEM, Multigrid and mixed precision

12

Application 2: OpenFOAM
+ = OGL¹

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

LDU
conversion
and update

Device
Persistency

Solver and
precond.
wrapper

OGL

GPU stopping
criterion

13

https://github.com/hpsim/OGL

Application 2.1 : OpenFOAM (Lid driven cavity)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

DoFs 1e6 to 25e6
Application icoFoam

Solver, p CG, DIC

Solver, U BiCGStab, DILU

14

+ = OGL¹

https://github.com/hpsim/OGL

Application 2.1 : OpenFOAM (Lid driven cavity)

Single GPU speedup (HIP (MI100) and CUDA (V100))
over CPUs, AMD (32 cores and Intel (76 cores) resp.

Poisson solver times with different preconditioners (AMD MI100
and AMD CPU, 32 ranks)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL
15

+ = OGL¹

https://github.com/hpsim/OGL

Multi-GPU and distributed

16

Application 2.2 : OpenFOAM (Motorcycle)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

Case DoFs
Small 8.678M
Medium 17.356M
Large 26.034M

DoF n*8.678M

Application simpleFoam

Outer iterations 500

Solver, p CG

Solver, U BiCGStab

17

+ = OGL¹

https://github.com/hpsim/OGL

Application 2.2 : OpenFOAM (Motorcycle)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

CG speedup with distributed Schwarz preconditioner with ISAI (left), and Multigrid (right) on MI100s versus 32 MPI
ranks on an AMD EPYC 7302 with an IC preconditioner.

18

+ = OGL¹

https://github.com/hpsim/OGL

Batched methods

19

Batched solvers in Ginkgo

20

● Batching: Independent

computations that can be

scheduled in parallel.

● Are highly suitable for GPUs and

processors with many parallel

computing units.

● Can maximize utilization of the

GPU, due to excellent scalability.

Application 3: Combustion simulations
● PeleLM is a parallel, adaptive mesh refinement

(AMR) code that solves the Navier-Stokes
equations with in the low Mach number regime
with the chemical reaction mechanisms.

● https://amrex-combustion.github.io/PeleLM/ov
erview.html

21

https://amrex-combustion.github.io/PeleLM/overview.html
https://amrex-combustion.github.io/PeleLM/overview.html

Application 3: Combustion simulations

Speedups in production code may be larger:
• Use of “suitable” initial guess (last linear solve);
• Less accurate solution often sufficient;

22
Batched Sparse Iterative Solvers for Computational Chemistry Simulations on GPUs, ScalA 2021, SC21,

Aggarwal, Kashi, Nayak, Balos, Woodward and Anzt.

Application 4: Fusion plasma simulations
XGC is a gyrokinetic particle-in-cell code, which
specializes in the simulation of the edge region of
magnetically confined thermonuclear fusion plasma.
The simulation domain can include the magnetic
separatrix, magnetic axis and the biased material
wall. XGC can run in total-delta-f, and conventional
delta-f mode. The ion species are always gyrokinetic
except for ETG simulation. Electrons can be adiabatic,
massless fluid, drift-kinetic, or gyrokinetic.
Source: https://xgc.pppl.gov/html/general_info.html

• Two species
• Ions easy to solve
• Electrons hard to solve
• Banded matrix structure
• Non-symmetric, need BiCGSTAB
• n = ~1,000
• nz = ~9,000 23

https://theory.pppl.gov/research/research.php?rid=10#h34
https://xgc.pppl.gov/html/general_info.html

Application 4: Fusion plasma simulations

24
Batched Iterative solvers on GPUs for Fusion Plasma simulations, IPDPS 2022

Kashi, Nayak, Kulkarni, Lin and Anzt.

Outlook

● Efficient usage of GPUs is crucial in the path to Exascale.
● Ginkgo provides high performance implementations of many algorithms

and we have shown good performance for a variety of applications.
● Distributed functionality in Ginkgo is bleeding edge, but has shown good

scaling and performance.
● More mixed-precision functionality is being investigated (SpMVs, solvers

and preconditioners)
● A fully GPU enabled sparse direct solver will also be available soon in

Ginkgo.

25

Thank you!
pratik.nayak@kit.edu

26

https://github.com/ginkgo-project/ginkgo

mailto:pratik.nayak@kit.edu
https://github.com/ginkgo-project/ginkgo

Bonus

27

Application 4: Fusion plasma simulations

28

Application 1: Finite element library interfaces.
Example: Speeding up MFEM’s “example 22” (damped harmonic oscillator) on NVIDIA and
AMD GPUs

MFEM
Finite

element
library

29

Application 2.3 : OpenFOAM (Nasal cavity)

¹Olenik,G: OGL: OpenFOAM Ginkgo layer: https://github.com/hpsim/OGL

Airflow inside a human nose

Total application speedup
on one node with 4 GPUs Solver cost breakdown

30

+ = OGL¹

https://github.com/hpsim/OGL

The High Performance Computing (HPC) Landscape

Dongarra et.al May 2022 Tech report ICL-UT-22-05 31

The High Performance Computing (HPC) Landscape

Dongarra et.al May 2022 Tech report ICL-UT-22-05 32

Read and writes significantly more expensive !

Abdelfattah et.al Sep 2021 Tech report LLNL-JRNL-826451 33

