

A probabilistic model for asynchronous iterative methods

APDCM workshop, IPDPS 2024, San Francisco, 27th May, 2024

Pratik Nayak and Hartwig Anzt

 $\begin{array}{l} \textit{Outline} \cdot \mathsf{Motivation} \cdot \mathsf{Model} \cdot \mathsf{Analysis} \cdot \mathsf{Summary} \\ \textbf{Outline} \end{array}$

- Motivation
- Asynchronous Richardson: Model and analysis
- Asynchronous Schwarz: Model and analysis
- Summary and outlook

 $Outline \cdot \textit{Motivation} \cdot Model \cdot Analysis \cdot Summary$

Motivation

• Compute systems are increasingly heterogeneous

One Frontier node (#1 in top500)

- Compute systems are increasingly heterogeneous
- Compute systems are increasingly hierarchical

NVIDIA GPU schematic

 $\begin{array}{l} \text{Outline} \cdot \textit{Motivation} \cdot \text{Model} \cdot \text{Analysis} \cdot \text{Summary} \\ \text{Motivation} \end{array}$

- Compute systems are increasingly heterogeneous
- Compute systems are increasingly hierarchical
- Synchronization bottlenecks restrict scalability

Outline \cdot *Motivation* \cdot Model \cdot Analysis \cdot Summary Motivation

- Compute systems are increasingly heterogeneous
- Compute systems are increasingly hierarchical
- Synchronization bottlenecks restrict scalability
- Fault tolerance can improve robustness

A typical computational physics workflow

Domain (left¹) and simulation (right²)

¹Liu et. al, Oct, 2018 ²<u>https://amrex-combustion.github.io/</u>

3 2024.05.27 Pratik Nayak - Probabilistic modeling for asynchronous methods

A typical computational physics workflow

A typical computational physics workflow

5 2024.05.27 Pratik Nayak - Probabilistic modeling for asynchronous methods

Outline · *Motivation* · Model · Analysis · Summary Solving linear systems Direct methods

- Provide solution in a fixed number of steps to required precision
- Computationally more expensive ~ $\mathcal{O}(n^3)$

Iterative methods

- Successively approximate solution
- Computationally cheaper, dependent on matrix properties ~ $\mathcal{O}(kn^2), \;\; k << n$
- Efficient when exact solution not necessary

Conjugate gradient: Operation breakdown

Synchronization-free methods

- Don't explicitly synchronize
- Take latest available data from your neighbor
- Compute on the partially updated data
- Convergence guaranteed only under certain conditions

GPU 0	GPU 1	GPU 2
GPU 3	GPU 4	GPU 5
GPU 6	GPU 7	GPU 8

Asynchronous methods: Convergence conditions¹

The asynchronous iteration is defined as
$$x_{k+1}^l = \begin{cases} x_k^l & \text{if } l \notin \mathcal{G}_k \\ f_l(x_{s_1(k)}^1, \cdots, x_{s_n(k)}^n) & \text{if } l \in \mathcal{G}_k \end{cases}$$

With iteration subsets, $\mathcal{G}_k \subseteq \{1, ..., J\}$ and delay subsets $\mathcal{S}_k = s_1(k), \cdots, s_n(k)$, the conditions necessary for convergence are

the sets $\{k \mid j \in \mathcal{G}_k\}$ are unbounded for j = 1, ..., J

$$s_j(k) \le k-1$$
 $\forall \ j,k$ Only previous iterations can be used

$$lim_{k\to\infty}s_j(k) = \infty$$
 for $j = 1, ..., J$ Use the latest local update

Each component needs to be continuously updated

The asynchronous iteration is denoted by $(\mathcal{F}, x_0, \mathcal{G}, \mathcal{S})$ ¹Chazan and Miranker, Chaotic relaxation

Asynchronous methods: Probabilistic model

The asynchronous iteration is defined by $(\mathcal{F}, x_0, \mathcal{G}, \mathcal{S})$, as defined before can be modeled with a probabilistic model. Let $k_{\mathcal{F}}$ be the latest local update and $\mathcal{D} \sim \mathcal{P}(x)$ be some probability distribution where the delays are sampled from. $\mathcal{S}_{\mathcal{P}} = k_{\mathcal{F}} - \mathcal{D}$, therefore gives us iteration from which we incorporate information. The probabilistic model samples the delays, $p(k) \in \mathcal{D} \sim \mathcal{P}$, subject to the conditions,

- 1. Positivity: $p(k) \ge 0$
- 2. Validity: $p(k) \leq k 1$, delays cannot be greater than the current iteration.
- 3. Using latest available update: p(k+1) p(k) > 0
- 4. No stagnation: $p(k+1) \rightarrow \infty$
- 5. Offset:

$$p(k) egin{cases} = 0, & \textit{if} \ \ k < o_{\mathcal{F}} \ \in \mathscr{P}_S, & \textit{otherwise} \end{cases}$$

where $o_{\mathcal{F}} \geq 0$ is the iteration offset at which the delays are introduced.

Asynchronous methods: Probability distributions

- Aim to model realistic systems
- Exponential: High probability of no delays
- Normal: Delays distributed around the mean.

Asynchronous methods: Empirical estimation

- Linear fit on the residual, and convergence rate given by the slope of the fit.
- Assuming linear convergence, number of iterations for convergence

 $i = \frac{\log(\tau_{final})}{\log(\varrho(A))}$

• Therefore, $0 < \rho(A) \le 1$

 $Outline \ \cdot \ Motivation \ \cdot \ \textit{Model} \ \cdot \ Analysis \ \cdot \ Summary$

Asynchronous Richardson: Problem

- Laplace 2D problem
- Symmetric and positive definite matrix
- On a 5 x 5 grid, 25 degrees of freedom

Asynchronous Richardson: Random sampling algorithm

- 1: A, b, x, ω
- 2: $r \leftarrow b Ax, e \leftarrow \mathbf{0}$
- 3: for $k < N_{iter}$ do
- 4: $d \leftarrow \texttt{RANDOM}_\texttt{SAMPLE}(k, a, b)$
- 5: $r \leftarrow b Ax(d)$
- 6: if $\|r\| < \tau$ then
- 7: break
- 8: end if
- 9: $e \leftarrow \texttt{PRECOND}(r)$
- 10: $x \leftarrow x + \omega e$
- 11: end for

Asynchronous Richardson: Exponential distribution

Asynchronous Richardson: Half-normal distribution

 $\omega=\,0.8.$

Asynchronous Richardson: Relaxation parameter

Asynchronous Schwarz: Definition¹

The asynchronous iteration is defined as $x_{k+1}^l = \begin{cases} x_k^l & \text{if } l \notin \mathcal{G}_k \\ \sum_{j=1}^J D_{l,j}^{(k)} & y_{s_j(k)}^j & \text{if } l \in \mathcal{G}_k \end{cases}$ With iteration subsets, $\mathcal{G}_k \subseteq \{1, ..., J\}$ and delay subsets $\mathcal{S}_k = s_1(k), \cdots, s_n(k)$, and $y_{s_i(k)}^j = M_j^{-1}(N_j x_{s_i(k)}^j + f)$

With the splittings $A = M_j - N_j$ $j = 1, \dots, J$, and the weighting matrices $D_{l,j}^{(k)}$ such that $\sum_{j=1}^{J} D_{l,j}^{(k)} = I \quad \forall l, k$

The asynchronous iteration is denoted by $(\mathcal{F}_{schw}, x_0, \mathcal{G}, \mathcal{S})$; called the asynchronous Schwarz method.

¹Frommer and Szyld

Asynchronous Two-level Schwarz: Definition¹

A coarse level enables robustness for domain decomposition methods, enhancing the exchange of global information. We emulate the action of a global coarse matrix, A_0^{-1} , and incorporate it into the solution as shown below

$$\mathbf{u}^{k+1/2} = \mathbf{u}^{k} + \sum_{i=1}^{p} R_{i}^{\top} D_{i} A_{i}^{-1} R_{i} (\mathbf{f} - A \mathbf{u}^{k})$$
$$\mathbf{u}^{k+1} = \mathbf{u}^{k+1/2} + R_{0}^{\top} A_{0}^{-1} R_{0} (\mathbf{f} - A \mathbf{u}^{k+1/2})$$

Coarse correction

¹Szyld et.al

 $Outline \ \cdot \ Motivation \ \cdot \ \textit{Model} \ \cdot \ Analysis \ \cdot \ Summary$

Karlsruhe Institute of Technology

Asynchronous Richardson: Problem

- Laplace 2D problem
- Symmetric and positive definite matrix
- On a 8 x 8 grid, 64 degrees of freedom

Asynchronous Schwarz: Two-level probabilistic model

1: A, b, x, ω 2: $r \leftarrow b - Ax, e \leftarrow 0$ 3: for $k < N_{iter}$ do if $\|r\| < \tau$ then 4: break 5: 6: end if for $j < N_{domains}$ do 7: $d_i \leftarrow s_i(k) \in \mathcal{S}_k$ 8: ▷ Get the sampled delay $r_i \leftarrow b_i - A_i x_i^{d_j}$ 9: > Communicate and update global solution with delay $e_j = A_{j,j} ackslash r_j \ x_j^{k+1} := x_j^k + e_j$ 10: ▷ Solve locally 11: ▷ Update local solution 12: end for if coarse corr == additive then 13: if $mod(f, N_{iter}) == 0$ then 14: > Update only for coarse correction frequency, / $e_{coarse} = A_{coarse} \backslash Rr$ 15: Compute coarse correction $x^{k+1} := x^{k+1} + \alpha_{coarse} Pe_{coarse}$ 16: > Weighted additive coarse correction end if 17: else if coarse_corr == multiplicative then 18: $r \leftarrow b - Ax^{k+1}$ 19: Compute updated residual $e_{coarse} = A_{coarse} \backslash Rr$ 20: Compute coarse correction $x^{k+1} := x^{k+1} + Pe_{coarse}$ 21: ▷ Multiplicative coarse correction end if 22: 23: end for

Asynchronous Schwarz: Probabilistic model, coarse correct

Asynchronous Schwarz: Probabilistic model, delay

21

Asynchronous Schwarz: Probabilistic model, coarse freq

Asynchronous Schwarz: Probabilistic model, coarse levels

1 coarse level

Summary and future work

- Asynchronous methods can be modeled with a probabilistic approach
- Effects of delays can be controlled to balance between convergence and robustness
- Extending these methods to faster converging methods such as Krylov methods can be very interesting.
- Utilizing probabilistic linear solvers¹ within this framework could allow to bundle in uncertainty within the solution and the system instabilities.

¹Hennig et.al, Probabilistic linear solvers

Asynchronous methods: Richardson convergence¹

The asynchronous iteration is defined by $(\mathcal{L}, x_0, \mathcal{G}, \mathcal{S})$ with an iteration matrix T, converges if

(a) converges if there exists a positive vector, v and a scalar $\alpha < 1$ such that $|T|v \leq \alpha v$.

(b) The spectral radius of the iteration matrix, T, ρ(|T|) < 1.
Similarly the Richardson iteration with (T_ω, x₀, 𝔅, 𝔅), T_ω = I − ωM⁻¹A, A = M − N, M = A_{ii} and N = A_{i≠j} converges if
(a) ρ(|T_ω|) = α < 1
(b) 0 < ω < 2/(1+α)

¹Chazan and Miranker, Chaotic relaxation