

A GENERIC FRAMEWORK FOR SCHWARZ DECOMPOSITION METHODS.

PROBLEM

Exascale computing requires resilience, scalability and efficiency. A test bed is required to:

- 1. Test and solve large general problems.
- 2. Test the capability of the Schwarz methods, one-level and multilevel methods.
- 3. Experiment with different interface boundary conditions for the Optimized Schwarz methods.
- 4. Test the benefits of an asynchronous communication layer, especially at exascale.

METHOD

- 1. Partition can be replaced by different mod userdefined
- 2. System solution is hardware agnostic: CPU, GPU Synchronous or asynchronous.

REFERENCES

- [1] G. Alzetta et.al, The deal.ii library: Version 9.0 In J. Num. Math, 2018
- [2] A. Buchanan and A. Fitzgibbon. Interactive Feature Tracking using K-D Trees and Dynamic Programming. In CVPR '06

Using deal.ii add an asynchronous communication layer to study the benefits of asynchronicity especially for large problems. Can resilience be proved for a general problem at large scales ?

{ PRATIK.NAYAK AND HARTWIG.ANZT }@KIT.EDU

ONTDIDITIONIC	Εv
UNIKIDUIIUNS	ΓλΑ
A generic framework to solve Schwarz meth- ods for very large problems using deal.ii [1]. olve for all permutations below:	Gei
 Optimized Schwarz, Restricted Schwarz and Multi-level Schwarz methods. Different partitioning methods: Trilings 	
 Zoltan, METIS, p4est with adaptive meshing. 3. Different finite element problems and techniques. 	Rol
odules: METIS, Zoltan, KaHIP, p4est,	
, KNL and indifferent to communication layers:	
Create Triangulation; Initial Partition; Cell and dof properties;	
ty; ;;	
stic	
FUTURE DIRECTION	

Experiment with different interface boundary conditions and compare the benefits of these conditions for different physical problems compared and including multi-level Schwarz methods.

MPLE - THE POISSON PROBLEM - OPTIMIZED SCHWARZ

eneric interface condition

$$-\Delta u(\mathbf{x}) = f(\mathbf{x}), \forall \mathbf{x} \in \Omega; \mathcal{B}(u) = g, \text{ on } \partial\Omega.$$
$$\int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\mathbf{x} - \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_j \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \mathbb{B} \varphi_i \, d\mathbf{x} = \int_{\Omega} \varphi_i f \, d\mathbf{x} + \int_{\partial\Omega} \varphi_i \, d\mathbf{x} + \int_{\partial\Omega} \varphi$$

bin interface condition

k

SOURCE CODE

The source code of the modified fork of the deal.ii library is available at https://github.com/pratikvn/dealii

