
Efficient solution of batched band linear
systems on GPUs

Journal Title
XX(X):1–12
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Pratik Nayak1 Isha Aggarwal1 Hartwig Anzt2

Abstract
The data-parallel solution of sparse linear systems sharing the same band structure with the help of batched band
solvers is relevant in many applications. In this paper, we elaborate on three new GPU algorithms for the data-parallel
direct solution of linear system batches, sharing a band structure. We develop algorithms for three types of matrices: tri-
diagonal matrices, small bandwidth matrices, and wide bandwith matrices. We implement these algorithms for NVIDIA
GPUs and study the performance for a large range of matrix sizes and number of batch items. We compare the
performance of our implementations with the corresponding vendor implementations, with the state-of-the-art GPU
library MAGMA, and with the optimized LAPACK implementation provided by Intel MKL on Intel Skylake CPUs. We also
showcase the effectiveness of our batched band solvers for matrices originating from the plasma physics application,
XGC. We show that our implementations are on average ∼ 2× (for batched banded solvers) to ∼ 3× (for batched
tridiagonal solvers) faster than the state-of-the-art and the vendor provided implementations.

Keywords
batched algorithms, band linear systems, GPU computing, direct solvers, LU factorization, partial pivoting

1 Introduction

Many computational science applications such as plasma
physics and combustion simulations use ODEs for modeling
the physics and the chemical processes in a grid of cells
covering the simulation domain. The solution of the ODEs
for the distinct cells results in many linear systems of small
size that all share the same sparsity pattern. Often, the
discretization is based on finite difference schemes, resulting
in this shared sparsity pattern being of band structure. To
evolve the physics in space-time (Hindmarsh (2002)), a
non-linear solver is required. For robustness and stability,
implicit methods are usually preferred, and a linearization
step necessitates the solution of a sequence of linear systems.

For applications that need to solve for independent, non-
coupled variables such as concentration of chemical species,
the linear systems for the distinct cells are independent.
Therefore, in each non-linear solve, there is a need for
solver functionality that can efficiently handle a large
number of (relatively small) independent linear systems. For
the efficient solution of these independent linear systems,
batched methods have been developed (Dongarra et al.
(2016)).

Batched methods are well-suited for the hierarchical
parallelism provided by many-core architectures such as
GPUs. Mapping the independent linear system solutions to a
coarser level enables synchronization-free computing, while
the finer level of parallelism can still be utilized to accelerate
the solution of the individual linear systems (Nayak (2023)).

With GPUs providing most of the computing power
in the latest supercomputers, it is important to deploy
algorithms that harness the massive parallelism provided by
these architectures. In this paper, we present three different

algorithms that enable efficient solution of band-structure
linear systems on GPUs. Our contributions are:

1. General batched band matrix solvers for GPUs that
outperform existing state-of-the-art CPU and GPU
solvers.

2. A new variant of a blocked band solver that enables
the efficient solution for wide bandwith matrices.

3. A batched tri-diagonal solver that significantly
outperforms the vendor libraries.

4. A detailed performance evaluation of the GPU band
solvers for randomly generated matrices and an
analysis investigating the performance impact of
partial pivoting. Additionally, we consider matrices
originating from a plasma physics application, XGC,
to showcase the performance of our batched band
solver in real-world applications.

In Section 2, we provide a brief background of band
matrices, their relevance in scientific computing applications,
and some related work. In Section 3, we provide details
of our band and tri-diagonal solver algorithms, including
implementation and optimization details that enable efficient
computation on GPUs. We evaluate the performance of our
band solvers and benchmark them against state-of-the-art
band solvers in Section 4. We finally conclude with a brief
summary in Section 5.

2 Background and Related Work
Direct methods for the solution of linear systems compute the
solution via a fixed and pre-defined sequence of operations.

1Karlsruhe Institute of Technology, Germany;
2Technical University of Munich, Germany;.

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

Most direct solvers initially factorize the coefficient matrix
in the factorization step and then solve the linear system
with forward and backward substitution. For a general
matrix of size n, the factorization step has a computational
cost of O(n3), which makes the approach expensive and
thus unattractive for large problems. Iterative methods
that compute a sequence of solution approximations with
increasing accuracy are thus often preferred. However, direct
solvers are still attractive if the linear system is of small
size, very ill-conditioned, or if the factorized matrix can be
re-used. The most common general direct solver is the LU
factorization combined with the triangular solves (Duff et al.
(2017)).

Algorithms for the factorization and subsequent solution
can account for the sparsity pattern and symmetry of the
matrix. While for small matrices, using a dense storage
format is acceptable, storing large matrices in the dense
format can be inefficient or even impossible if the memory
requirements exceed the hardware resources. Efficient
algorithms have been developed for these cases that handle
the coefficient matrix and the factorization in sparse matrix
formats such as CSR (Duff et al. (2017); Li and Demmel
(2003)). When using sparse data formats, the factorization
step is typically split into two stages, a symbolic phase
where the row dependencies and fill-in are determined, and a
numeric phase where the actual factorization and the numeric
values are computed.

The sparsity pattern of the generated matrix depends on
the application. Many applications require the solution of
linear systems whose matrices have a band structure, for
example, those that arise from a stencil discretization. Band
matrices are characterized by two main parameters: the lower
bandwidth, βL, and the upper bandwidth, βU , as shown in
Figure 1 with (βL, βU) = (3, 1).

d1 eu,1 · · · 0

cl,2 d2 eu,2 · · ·
...

bl,3 cl,3 d3 eu,3 · · ·
...

al,4 bl,4 cl,4 d4 eu,4 · · ·
...

0
. . .

...

... al,n−1 bl,n−1 cl,n−1 dn−1 eu,n−1

... · · · al,n bl,n cl,n dn

Figure 1. Band matrix (Rn×n) with βL =3, βU =1

There have been efforts in developing algorithms for
data-parallel basic linear algebra functionality (BLAS) and
advanced solver algorithms (LAPACK). The data-parallel
versions of the functionality are generally called “batched”
to indicate the data-parallel processing of a batch of
linear algebra objects. A batched BLAS interface has also
been recently proposed (Dongarra et al. (2016, 2017)) to
standardize the interface to batched basic linear algebra
functionality across hardware architectures and software

stacks. This standardization effort for batched functionality
has also been expanded to LAPACK, providing direct solvers
for dense linear systems (Abdelfattah et al. (2021)).

In terms of batched direct solvers for sparse problems,
there has been some work on tri-diagonal and penta-diagonal
systems (Valero-Lara et al. (2018); Carroll et al. (2021);
Gloster et al. (2019)), and the NVIDIA cuSPARSE library
provides the gtsv2StridedBatch routine based on
variants of cyclic reduction.

These methods aim to solve tri-diagonal and penta-
diagonal systems and rely on Thomas’ algorithm or cyclic
reduction (Valero-Lara et al. (2018)). These implementations
are not fine-grain parallel, but each GPU thread solves an
entire linear system. The performance benefits, therefore,
primarily come from storing the problem data in an
interleaved fashion to enable coalesced data access. In the
context of the Human Brain Project (Valero-Lara et al.
(2017)), methods similar to cuThomasBatch (Valero-Lara
et al. (2018)) have been developed to accelerate the solution
of batched Hines systems on NVIDIA GPUs. There also
exists some work on the efficient solution of batched
penta-diagonal systems (Gloster et al. (2019); Carroll et al.
(2021)), however, in these attempts, the factorization step
is performed on the CPU, necessitating data transfer for the
triangular solves. Within a non-batched setting, GPU-based
tri-diagonal solvers have also received some attention (Klein
and Strzodka (2021); Pérez Diéguez et al. (2018)).

The development of direct solvers for band matrices with
an arbitrary number of sub- and super- diagonals, (βL, βU)
has received very little attention. The only implementation
that performs a GPU-resident factorization and solve for
band matrices that the authors could find at the time of
writing this paper is the implementation available in the
MAGMA library (Abdelfattah et al. (2023)). For the CPU,
LAPACK provides efficient routines (xgbsv) (Blackford
and Dongarra (1991)) that can be launched in a data-
parallel fashion by launching a solver routine on each of
the CPU cores and each solver instance solving a subset
of the linear systems in the batch. Additionally to the high-
level parallelization across the systems in the batch, vendor
implementations of LAPACK such as Intel MKL (Intel
(2023)) may use SIMD vectorization to harness the available
parallelism within a single CPU core for increasing the
performance of the solver instances launched on the distinct
cores.

3 GINKGO’s batched band solvers
GINKGO is a high-performance numerical linear algebra
library that implements efficient and performance portable
linear solvers and preconditioners (Anzt et al. (2022)).
Batched iterative solvers and preconditioners have been
added recently to accelerate science applications such as
combustion simulations (Aggarwal et al. (2021)) and plasma
physics (Kashi et al. (2023)). In this paper, we implement
GPU-resident batched band solvers for arbitrary band sizes
and specializations for wide bands and tri-diagonal matrices.

3.1 Batched band matrix storage format
Unlike general sparse matrices, the fill-in for band-structure
matrices is limited to within the band if no pivoting is

Prepared using sagej.cls

3

∗ ∗ ∗ ∗ + · · · +

∗ ∗ ∗ + · · · +

∗ ∗ + · · · +

∗ eu,1 eu,2 eu,3 eu,4 · · · eu,n−1

d1 d2 d3 d4 · · · dn

cl,2 cl,3 cl,4 · · · cl,n ∗

bl,3 bl,4 · · · bl,n ∗ ∗

al,4 · · · al,n ∗ ∗ ∗

Figure 2. Band storage (Rβst×n) : Number of elements stored
= βst × n.

used, and the fill-in with partial pivoting is also well-
defined, with given lower and upper bandwidths. Storing
these band matrices in a tailored format and using their
structure to compute the factorization can be advantageous.
LAPACK (Anderson (1999)) introduced an efficient storage
format for band-structure matrices and a customized solver
operating on the band matrix storage format in the LU
factorization and the subsequent triangular solves. We
visualize the band matrix storage format in Figure 2. As
partial pivoting is necessary to ensure stability for a general
linear system solver, the storage format allocates additional
memory for possible fill-in during the factorization. In
Figure 2, we see these locations marked by “+”. The extra
padding (elements only stored to ensure uniform strided
accesses) is marked with “∗”. The total number of bands
stored, each of size n, is equal to βst = 2βL + βU + 1.
This includes the extra storage required for possible fill-in
introduced by pivoting.

GINKGO also employs the standard LAPACK band matrix
format as shown in Figure 2. To ensure coalesced access,
GINKGO stores the matrix band arrays in a column-
major format without interleaving the elements of different
matrices. This has proven to be efficient for both GPU and
CPU implementations of band solvers (Abdelfattah et al.
(2023)).

3.2 Batched direct solves for band matrices
With the band matrix stored as shown in Figure 2, the
batched band direct solver consists of two steps: An LU
factorization that decomposes a band matrix of the batch
into triangular factors, and the subsequent triangular solves
using the generated triangular band factors. The batched
band direct solver is shown in Algorithm 1.

As our focus is on small problems and the goal is to solve
thousands to hundreds of thousands of small problems in
parallel, we map one linear system solve (factorization +
triangular solves) to one workgroup (thread block) of the
GPU. As workgroups have no data dependencies, this allows
for the parallel and independent processing of the problems,

Algorithm 1 The batched band direct solver.
1: INPUT: A, b
2: OUTPUT: x
3: for i ∈ [0, nbatch items) do
4: [Ai, bi, xi]← get batch item(i, A, b, x)
5: [Ai(:= LiUi), pivots]← lu factorization(Ai)
6: yi ← lower trsv(Ai, bi, pivots)
7: xi ← upper trsv(Ai, yi)
8: end for

and global memory reads and writes are conflict-free, thereby
reducing the global memory traffic.

Due to the reduced amount of parallelism available in the
band solver, large work-group sizes would lead to warp-
stalling. We therefore tune our workgroup sizes based on
the problem size and the matrix bandwidth. An additional
advantage of small workgroup sizes is that more batch
items can be processed concurrently, allowing for higher
throughput.

For the efficient solution of batched band linear
systems, we perform the triangular solves for each system
immediately after the factorization. That is, once a band
matrix is loaded into the multiprocessor memory, we
first perform in-place factorization and then the forward
and backward triangular solves in shared memory without
writing intermediate results to the GPU main memory. While
this requires consolidating both functionalities into a single
GPU kernel it radically reduces the main memory access. In
the end, we launch a single kernel handling the solution of
all linear systems in the batch.

Next, we provide more details on our generic band solver
implementation. Afterward, we present the implementations
tailored towards matrix batches with wide bands and batches
composed of tri-diagonal matrices.

3.2.1 Batched LU factorization for band matrices The
LU factorization of a band matrix batch is shown in
Algorithm 2. For each batch item, we process each column
individually. First, we identify the pivot and process the row
swaps. We then proceed by scaling the columns and finish by
updating the trailing matrix. After completion, we have an in-
place factorization of the input band-matrix. We note that as
a result of the storage scheme shown in Figure 2, we do not
need to perform a structural analysis or allocate additional
memory to account for fill-in.

Templating each kernel on a compile-time subwarp size,
we can maximize SIMD parallelism and ensure that accesses
to the band matrix are coalesced.

Algorithm 2 The LU factorization for band-structure
matrices.
1: INPUT: Ai, nrows, βL, βU

2: OUTPUT: In-place factorization: Ai := LU , pivots
3: for col ∈ [0, nrows) do
4: piv← find pivot row(Ai, col)
5: end col← max(end col, min(piv + βU , nrows − 1))
6: if piv != diag then
7: swap rows(col, end col, piv, Ai)
8: end if
9: scale col(col, Ai)

10: update trailing matrix(col, end col, Ai)
11: end for

Prepared using sagej.cls

4 Journal Title XX(X)

3.2.2 Batched triangular solves After computing a
factorization, we need to perform two triangular solves.

(LU)x = b

1 : Ly = b , Lower trsv
2 : Ux = y , Upper trsv

(1)

With partial pivoting (only row interchanges), the lower
triangular solver uses the pivoting array computed in the
factorization step, while pivoting is not required for the upper
triangular solve.

We process both triangular solves in a row-by-row fashion,
with the upper triangular solve processing elements in a
bottom-up fashion (backward substitution) and the lower
triangular solve processing elements in a top-down order
(forward substitution).

3.2.3 Efficient solution of wide-band matrices For matri-
ces with small to medium bandwidths ((βL + βU) < 32),
processing each column is efficient, as it enables coalesced
access when performing the scaling and the trailing matrix
updates. For matrices with a wide band, due to the larger
number of elements that need to be updated in each row, per-
forming a blocked factorization and processing ϕ columns
at once, where ϕ is the panel size, can be advantageous.
A schematic of our panel-based factorization is shown in
Figure 3 for a panel size of 2.

We partition the matrix into block-diagonal (A00 ∈
Rϕ×ϕ), trailing row block ([A01A02] ∈ Rϕ×(ϕ1j+ϕ2j)),

trailing column block (
[
A10

A20

]
∈ R(ϕ1k+ϕ2k)×ϕ) and

a trailing block-diagonal block (
[
A11 A12

A21 A22

]
∈

R(ϕ1k+ϕ2k)×(ϕ1j+ϕ2j)) as shown in Equation (2), with
ϕ1k, ϕ2k, ϕ1j , ϕ2j as defined in Algorithm 3 (the trailing
size of the blocks).

A =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 (2)

The panel LU factorization algorithm, shown in Algo-
rithm 3, proceeds by first factorizing the column panelA00

A10

A20

. We compute the row pivots, and update the trailing

block columns A10 and A20. Using the computed pivots,
we apply the necessary row interchanges in a block-column
fashion. Using a trsm and trailing column update, we update
the block columns for A01 and A02.

We proceed in this fashion recursively for the trailing
block diagonal matrix until the entire matrix has been
factorized. As the factors replace the original matrix in
memory, we consider it an in-place factorization.

To ensure coalesced accesses when processing ϕ columns
at a time, we utilize a workspace array to copy the matrix
blocks that tend to have non-coalesced accesses, namely
A02 and A20. We omit this implementation detail from
Algorithm 3 for simplicity.

3.3 Efficient solution of tri-diagonal matrices
Tri-diagonal matrices are a special case of band matrices
with (βL, βU) = (1, 1). For these systems, it is not necessary

d1 eu,1 · · · 0

cl,2 d2 eu,2 · · ·
...

bl,3 cl3 d3 eu,3 · · ·
...

al,4 bl,4 cl,4 d4 eu,4 · · ·
...

0
.

...

... al,n−1 bl,n−1 cl,n−1 dn−1 eu,n−1

... · · · al,n bl,n cl,n dn

Figure 3. Panel factorization for band matrix (∈ Rnrows×nrows

) with βL = 3, βU = 1, ϕ = 2.

Algorithm 3 The panel-based LU factorization for band-
structure matrices.
1: INPUT: Ai, nrows, βL, βU , ϕ
2: OUTPUT: Factorized(in− place)Ai(= LiUi)
3: for j ∈ [0, ϕ, nrows) do
4: ϕj ← min(ϕ, nrows − j)
5: ϕ1k ← min(βL − ϕj , nrows − j − ϕj)
6: ϕ2k ← min(ϕj , nrows − j − βL)
7: for k ∈ [j, j + ϕj) do
8: piv← find pivot row(Ai, k)
9: end col← max(end col, min(piv + βU , nrows − 1))

10: if piv != k then
11: swap rows(k, end col, piv, Ai)
12: end if
13: pivots[k]← piv
14: update trailing matrices(k, j+ϕj − 1, Ai,10, Ai,20)
15: end for
16: ϕ1j ← min(end col− j + 1, βL + βU)− ϕj

17: ϕ2j ← max(0, end col− j + 1− βL − βU)
18: apply row interchanges(pivots, Ai,01, Ai,11, Ai,21)
19: apply row interchanges(pivots, Ai,02, Ai,12, Ai,22)
20: trsv and update(Ai,01, Ai,11, Ai,21)
21: trsv and update(Ai,02, Ai,12, Ai,22)
22: end for

to compute an LU factorization, but we can directly use
the Thomas algorithm to solve the linear system (Valero-
Lara et al. (2018)). A recursive divide-and-conquer approach
allows for a high level of concurrency (Wang and Mou
(1991)). We use this approach for the batched tri-diagonal
solver and show that our implementation is faster than both
the vendor-provided tri-diagonal solver implementation and
the general band solver implementation.

The algorithm we use (shown in Algorithm 4) is a variant
of the standard parallel Gaussian Elimination (GE) for tri-
diagonal matrices (Wang and Mou (1991)). The idea is to
first merge adjacent rows into groups, with a partial GE,
removing dependencies between the adjacent groups. We
then obtain groups that can be eliminated in parallel with
a full GE step. Once all groups have been eliminated with
a forward GE, we can perform a backward substitution to
obtain the final solution. A schematic of this process is shown
in Figure 4 for ρ = 2 where ρ is the number of merge steps
that is performed on the initial matrix and for a tile size,
t = 16.

To optimize performance, we expose two control knobs to
the user. The tile size, t, defines the size of the matrix tile
to be handled by each subgroup, and the number of merge

Prepared using sagej.cls

5

steps, ρ, defines the total number of groups that are created
and forward-eliminated in parallel. Additionally, the user
can choose one of two strategies: Each thread in a subwarp
handles one row of the matrix (strat1), or each thread in a
subwarp handles 2 rows of the matrix (strat2). Therefore,
we can obtain (ρ, t) from the constraints:

(ρ, t) s.t

{
strat1 : 2ρ ≤ t

strat2 : 2ρ ≤ 2t

To simplify usage, we also provide a strategy, auto, that
automatically sets (ρ, t) depending on the number of rows,
nrows, as that forms the central aspect when choosing (ρ, t).

To reduce global memory traffic, we utilize
communicator-group functionality such as warp-shuffles and
broadcasts (Tsai et al. (2021)). We instantiate kernels for all
major subwarp sizes (1, 2, 4, 8, 16, 32) during compile time.
The optimal subwarp size is selected at runtime, depending
on the problem size (nrows).

(a) Initial matrix (b) Merge groups

(c) Eliminate group 1 (d) Eliminate group 2

(e) All groups eliminated (f) Final solution

Figure 4. Divide and conquer parallel Gauss-Elimination
algorithm for tri-diagonal matrices with number of merge steps,
ρ = 2 and tile size, t = 16.

Algorithm 4 The batched tri-diagonal algorithm.
1: INPUT: A = (trid(al, ad, au)), b, ρ, t
2: OUTPUT: x
3: ntiles ← ceildiv(nrows, t)
4: for j ∈ [0, ntiles) do
5: curr tile = get tile(al, ad, au, j, t, ntiles)
6: curr grp size← 1
7: ▶ Merge groups
8: if !(last tile) or size(last tile) == t then
9: for s ∈ [0, ρ) do

10: merge adjacent groups(curr tile, curr grp size, bk)
11: curr grp size *= 2
12: end for
13: end if
14: ▶ Forward full Gaussian elimination
15: ngroups ← t / curr grp size
16: for g ∈ [0, ngroups) do
17: eliminate bottom spike(curr tile, curr grp size, g, bk)
18: end for
19: end for
20: ▶ Backward substitution
21: for j ∈ [ntiles − 1, 0) do
22: curr tile = get tile(al, ad, au, j, t, ntiles)
23: final grp size← 1
24: if !(last tile) or size(last tile) == t then
25: final grp size←pow(2, ρ)
26: end if
27: ngroups ← t / final grp size
28: for g ∈ [ngroups − 1, 0) do
29: backward substitution(curr tile, final grp size, g, xk , bk)
30: end for
31: end for

4 Benchmarking and performance
evaluation

We use the HoreKa* supercomputer for the performance
evaluation of our batched band solvers. It consists of 4
NVIDIA A100 GPUs per node and 2 sockets of Intel Xeon
Platinum (Icelake) CPUs with a total of 76 CPU cores per
node. The relevant hardware characteristics are shown in
Table 1.

4.1 Dataset and evaluation metrics
Our dataset consists of artificially generated band matrices
with random values (from a normal distribution) that
are different along three main characteristics: the lower
bandwidth βL, the upper bandwidth βU , and the diagonal
dominance. For each of the experiments†, we run 2 warmup
iterations to minimize the effects of startup artifacts such as
library and symbol loading, data transfer, etc., and gather
average timings over 5 kernel executions. We verified (post-
solve) that all variants of the solvers (our solvers and the ones
compared with) converged to machine precision (10−16).

To ensure a fair comparison of the solvers, we exclude the
setup and analysis timings and only report the timings for the
solution process (factorization and solve).

We present the performance of GINKGO’S batched solvers
on one A100 GPU with CUDA 11.8. For comparison
with the CPU-based banded solvers, we use the LAPACK
implementation from Intel MKL 2022.0.2 with the Intel
C/C++ compiler 2021.5, and parallelize over all the
available CPU cores (the full CPU node, 76 cores) using
OpenMP. Additionally, we compare our performance with

∗This work was performed on the HoreKa supercomputer funded by the
Ministry of Science, Research and the Arts Baden-Württemberg and by the
Federal Ministry of Education and Research.
†Reproducibility artifact: Nayak et al. (2024)

Prepared using sagej.cls

6 Journal Title XX(X)

Table 1. Hardware characteristics (NVIDIA (2020) and Intel (2021)).

Arch Peak BW (L1+SM) L2+L3 # of SMs
FP64 /CU /CUs

(TFlops) (GB/s) (KB) (MB)

A100-40GB 9.7 1555 192 40 108
Intel Xeon 8368 (1CPU) 1.9 204 64 95 38

MAGMA (Dongarra et al. (2014)), a state-of-the-art software
that implements both batched and non-batched BLAS and
LAPACK routines for GPUs.

We use MAGMA’s asynchronous batched strided inter-
face. As mentioned previously, we do not include the timings
for allocation and deallocation of MAGMA’s workspace.
Both the MAGMA and MKL interfaces perform an in-
place factorization, while GINKGO’S factorization ensures
the immutability of the input matrix and copies the band
matrix into a workspace before each solve. The time needed
for this explicit copy is included in the overall runtime.

The number of batch items in the experiments varies with
the number of nonzeros in each of the batch items. To
minimize effects of the CUDA runtime, we set the number of
batch items to a sufficiently high enough count that fills the
GPU memory and is reflective of the application use-case.

4.2 Batched band solvers on GPUs

We first present the performance of GINKGO’s batched band
solvers for two sets of bandwidths, (βL, βU) = (2, 3) and
(βL, βU) = (15, 5), representing matrices with narrow and
medium bandwidths. Figure 5 shows the time to solution for
the three batched band solvers: The CPU-based solver using
Intel MKL, GINKGO’S batched band solver, and MAGMA’s
batched band solver (Abdelfattah et al. (2023)), for matrix
sizes ranging from (32× 32) to (1024× 1024) for a total
of 104 linear systems. Both GINKGO’S and MAGMA’s
GPU batched band solvers outperform the batched CPU
band solver. The MAGMA implementation is dependent
on the amount of shared memory available on the GPU
and explicitly performs the factorization and the solve
after copying the band arrays to the GPU shared memory.
Therefore, we observe the jump in timings at a matrix size of
(128× 128) where the shared memory capacity is exceeded
and only part of the work vectors can be stored in shared
memory. We do not observe this behavior for GINKGO’s
implementation because it caches only the pivot vector in
shared memory but keeps the band array in global memory.
This strategy allows for increasing the occupancy of the
GPU, allowing the CUDA runtime to utilize the caches
effciently, based on the thread block sizes.

Due to the limited amount of parallelism available in the
band LU factorization, large thread block sizes are inefficient
as they leave most warps unutilized. For the non-blocked
factorization, GINKGO’s solver uses only a single workgroup
for each system in the batch. This allows leveraging the
coarse-grained parallelism of the GPU, enabling better
scaling when solving batches with large cardinality. This
comes at the cost of lower performance for large problems
as seen in Figure 5a, where more data needs to be fetched
from global memory.

Increasing the width of the bands of the matrices, as shown
in Figure 5b, with (βL, βU) = (15, 5), we see a similar
behavior: MAGMA’s batched band solvers perform the best,
particularly for matrix sizes larger than (256× 256). There,
in addition to increased shared memory usage, it is beneficial
to increase the amount of fine-grained parallelism available.

Figure 6 shows the solver runtime for GINKGO’S batched
band solver in comparison to Intel’s MKL LAPACK band
solver parallelized with OpenMP. We see that the GPU
based solvers are more efficient for small batch sizes, and
hence have a higher relative speedup. The variance in the
plot denotes the different linear system sizes (number of
rows in the system matrix), with the solid line showing the
median runtime over the different matrix sizes, ranging from
(64× 64) to (1024× 1024).

4.3 Wide band matrix optimizations
In Figure 7, we run the batched band solvers for matrices
with a large bandwidth, (βL, βU) = (32, 32). These wide
bands can occur in applications such as the XGC plasma
simulations (Ku et al. (2009)). As noted before, using a
non-blocked version of the factorization does not allow for
harnessing the parallelism available, and we see in Figure 7
that the non-blocked version on the GPU achieves lower
performance than CPU-based MKL solver. With a blocked
version, GINKGO’s GPU solver outperforms both the MKL
and MAGMA solver.

4.4 Tri-diagonal matrix optimizations
A pathological case for the band solvers is a tri-diagonal
matrix. With only one sub- and super- diagonal, it does
not offer enough parallelism to be solved with a general
band solver algorithm like in LAPACK. We therefore
implement a specialized tri-diagonal solver as explained
in Section 3, based on the parallel divide-and-conquer
approach (Wang and Mou (1991)). Figure 8 (a) shows the
runtimes of GINKGO’S batched tri-diagonal solver compared
with both cuSPARSE’s batched tri-diagonal solver, and with
GINKGO’s generic band solver, setting (βL, βU) = (1, 1).

GINKGO automatically selects the best parameters (tile
size, t and number of merge steps, ρ) for the tri-diagonal
solver based on the number of rows of the matrix to
maximize the available parallelism on the GPU. We see
that there is a significant benefit in using a tailored tri-
diagonal solver rather than using the band solver for tri-
diagonal matrices, with the tri-diagonal solver outperforming
the GPU-based band solver by almost 10×. The merge-
tiling-based approach outperforms the cuSPARSE batched
tri-diagonal solver by 1.7× on average.

Figure 8 (b) shows the speedup obtained by GINKGO’S
batched tri-diagonal solver over cuSPARSE for different
batch sizes. We note that for the cuSPARSE solver, we

Prepared using sagej.cls

7

0 200 400 600 800 1000

Num rows

10−3

10−2

T
im

e
(s
)

mkl-omp

gko-cuda

magma-cuda

1

(a) βL =2, βU =3

0 200 400 600 800 1000

Num rows

10−3

10−2

10−1

T
im

e
(s
)

mkl-omp

gko-cuda

magma-cuda

1

(b) βL =15, βU =5

Figure 5. Ginkgo banded solver on A100 v/s MKL+OpenMP on Intel Icelake (76), 104 batch items.

103 104 105

Number of linear systems (batch size)

10−3

10−2

10−1

T
im

e
(s
)

mkl-omp gko-cuda

1
Figure 6. Runtime comparison of GINKGO band solver and OMP+LAPACK solver for different batch sizes, βL = 2, βU = 3.

time only the solve phase and do not consider the analysis
phase. We observe that the merge-based tiling approach
is more efficient for large batch sizes due to the better
latency hiding of the warp scheduler for these larger batch
sizes. Additionally, for small problems, GINKGO performs
significantly better, for example with an average speedup of
over 3× for a matrix size of (8× 8). For larger problems,
GINKGO still outperforms the cuSPARSE solver with an
average speedup of 1.5×. We note that the cuSPARSE solver
exceeds the memory capacity of the NVIDIA A100 GPU,
and hence some of the bars are missing.

4.5 Effects of pivoting

To ensure the robustness of the LU factorization, pivoting
is usually necessary. For almost all cases, partial pivoting
(row interchanges) is sufficient to ensure the stability of the
factorization (Duff et al. (2017)). The state-of-the-art banded
solvers such as MKL and MAGMA also implement only
partial pivoting.

The dataset consists of matrices with all elements sampled
from a normal distribution with variance of 0.1. All band
solver implementations are equipped with partial pivoting. In
Figure 9 (a), we consider four experiment runs of the banded
solver and measure the number of row interchanges in each

Prepared using sagej.cls

8 Journal Title XX(X)

200 400 600 800 1000

Num rows

10−2

10−1

T
im

e
(s
)

mkl-omp

gko-cuda(non-blocked)

gko-cuda(blocked-8)

magma-cuda

1
Figure 7. Ginkgo’s panel based band solver, βL =32, βU =32, 5000 systems, block size=8× 8,

101 102 103

Num rows

10−4

10−3

10−2

10−1

T
im

e
(s
)

dgbsv-mkl-omp

gko-band

gko-trid-auto

cusparse-trid

1

102
4

409
6

163
84

655
36

262
144

104
857

6

Num batch items

100

101

S
p
ee
d
u
p

Num rows

8

16

32

64

128

256

512

1024

2048

1
Figure 8. Performance of GINKGO’S tri-diagonal solver on A100 (a) v/s MKL+OpenMP on Intel Icelake (76) and cuSPARSE, 65536
batch items and (b) v/s cuSPARSE for different batch sizes.

of the batch items for two matrix sizes. We see that with
a random matrix generation approach with approximately
equal elements sampled from a normal distribution, all batch
items need to perform partial pivoting and the number of row
interchanges across the batch items ranges from (nrows −√

nrows

2) to nrows, where nrows denotes the number of rows
in each matrix of the batch.

Figure 9 (b) shows the runtime of the solvers with
and without partial pivoting. To ensure that the band
solvers do not apply row exchanges, we explicitly make
the matrices strictly diagonally dominant by increasing the
weight of the diagonal to be such that |ajj | >

∑nrows

i |aij |.
For the CPU-based MKL solver, the runtime overhead of

pivoting is small – which is expected, given the significantly
larger and coherent caches (L2 and L3). The GPU solvers
from MAGMA and GINKGO both execute faster when no
pivoting is necessary. Conversely, if pivoting is necessary, the
communication across warps and induced synchronization
introduces significant performance penalties. With partial
pivoting, we also incur more cache misses, leading to
more fetches from the main memory resulting in reduced
performance for both MAGMA and GINKGO solvers.
Figure 10 shows the speedup of the solvers without pivoting
over the ones that need pivoting for different matrix sizes.
As expected, the benefits of omitting pivoting grow with the
matrix size.

Prepared using sagej.cls

9

512 1024

990

1000

1010

1020

1030

batch size

1000

10000

512 1024

Num rows

480

490

500

510

520

N
um

b
er

of
ro
w
in
te
rc
ha
ng
es

1

0 200 400 600 800 1000

Num rows

10−3

10−2

10−1

T
im

e(
s)

mkl-no-piv

gko-no-piv

magma-no-piv

mkl-piv

gko-piv

magma-piv

1
Figure 9. Effect of pivoting on performance (a) variation in number of row interchanges in a batch, (b) Comparing performance of
the band solvers with and without pivoting, βL = 15, βU = 5, 104 batch items.

32 64 96 12
8
16
0
19
2
22
4
25
6
28
8
32
0
35
2
38
4
41
6
44
8
48
0
51
2
54
4
57
6
60
8
64
0
67
2
70
4
73
6
76
8
80
0
83
2
86
4
89
6
92
8
96
0
99
2
10
24

Num rows

0.0

0.5

1.0

1.5

2.0

S
p
ee
d
u
p

mkl-omp

gko-cuda

magma-cuda

1
Figure 10. Band solver speedup without pivoting, βL = 15, βU = 5, 104 batch items.

We note that the code for the two experiments is identical.
The only difference is in the input data: the matrices are
generated such that pivoting is not necessary. Therefore, the
end-user automatically gets improved performance when the
matrix does not require any pivoting.

4.6 Linear systems from a plasma physics
application

Finally, we study the performance of GINKGO’s batched
band solvers for matrices from the XGC plasma physics
application. XGC (Hager et al. (2016)) is a 5D gyrokinetic
particle-in-cell (PIC) application code that numerically

simulates fusion plasma for realistic geometries, and has
been optimized for boundary plasma. A nonlinear collision
operator for the Coulomb collisions is required to accurately
model edge plasma. Using a Fokker-Planck-Landau operator
in the 2D guiding-center velocity space for multiple particle
species, XGC employs a backward Euler time integrator to
evolve the distribution functions for the multiple species in
time.

Each time-step therefore requires multiple non-linear steps
and each non-linear step requires multiple independent linear
solves, giving us a batched linear system for each species.
XGC currently uses the band solver from vendor-provided

Prepared using sagej.cls

10 Journal Title XX(X)

LAPACK, mapping one linear system to one CPU core using
Kokkos (Carter Edwards et al. (2014)).

The size and characteristics of the band matrix are
dependent on the velocity grid used. For example, using
a velocity grid of size (31× 32) gives a matrix of size
(992× 992). Additionally, if multiple species are involved,
we need to solve a linear system for each of these species.
For our purposes, we use a velocity grid of size (31× 32)
and two species: ions and electrons. The characteristics of
our test matrices (obtained from the XGC application) are
shown in Figure 11. We note that the matrix is derived from
a 9-point stencil, therefore the upper and lower bandwidths
are given by (βL, βU) = (33, 33), dictated by the number
of points in the x-direction of the velocity grid. The matrix
therefore has a moderately large bandwidth. The number
of batch items varies with the number of species, and can
depend on the available GPU memory. In a typical run of
XGC (on A100-40GB), it can vary from 256 to 1024. It is
expected that for newer GPUs with larger memory capacities,
this can be significantly larger.

In Figure 12, we compare the performance of our batched
band solvers with that of the state-of-the-art CPU-based band
solver from MKL on Intel CPUs and with the GPU batched
band solvers from MAGMA. Given the wide bandwidth
of this matrix, we observe that the non-blocked strategy
is inefficient and each subwarp gets assigned too much
work, and hence it is slower than both the MKL version
and MAGMA. Using a blocked version, with a panel
size ϕ = 2, we can improve our performance significantly,
outperforming MKL solver on average by 1.5×. The matrix
has lower and upper bandwidths of 33, and we observe that
a panel size of 8 gives the best performance, providing a
good balance between the amount of work assigned to each
subwarp while providing enough parallelism to have enough
concurrent warps resident on the compute unit. On average,
with a panel size of 8, we get a speedup of 2.5× over the
MKL solver. We did not observe any performance benefits
beyond a panel size of 8.

5 Conclusion

In this paper, we have presented GINKGO’S batched
band solvers which are useful in many computational
physics applications. Using a matrix storage scheme initially
proposed in LAPACK, we designed two algorithms for
the solution of batched band solvers. The first band
solver is efficient for small bandwidth matrices. The
second algorithm, a blocked version, uses a panel-based
factorization to enable an efficient factorization for matrices
with a wide band. We showcased the performance of our
batched band solvers for randomly generated band matrices
for different bandwidths, and demonstrated competitiveness
with the state-of-the-art batched band solvers for CPU
and GPU architectures. We included an analysis of the
performance impact of partial pivoting, and showed that the
GPU solvers can benefit from matrices that do not require
partial pivoting.

The third algorithm we presented employed a divide-and-
conquer approach for the solution of batched tri-diagonal
systems. This strategy proved to be significantly faster than

implementations available in the software stack provided by
hardware vendors.

Finally, we investigated the performance of the developed
batched band solvers when applied to linear systems
originating from the XGC plasma physics application. We
demonstrated attractive runtime savings over the solvers
available in MKL and the GPU library MAGMA.

Acknowledgements

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. This work was performed on the HoreKa
supercomputer funded by the Ministry of Science, Research and the
Arts Baden-Württemberg and by the Federal Ministry of Education
and Research, Germany.

References

Abdelfattah A, Costa T, Dongarra J, Gates M, Haidar A,
Hammarling S, Higham NJ, Kurzak J, Luszczek P, Tomov S
and Zounon M (2021) A Set of Batched Basic Linear Algebra
Subprograms and LAPACK Routines. ACM Transactions on
Mathematical Software 47(3): 21:1–21:23. DOI:10/gnn4cz.

Abdelfattah A, Tomov S, Luszczek P, Anzt H and Dongarra J
(2023) GPU-based LU Factorization and Solve on Batches
of Matrices with Band Structure. In: Proceedings of the
SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-
W ’23. New York, NY, USA: Association for Computing
Machinery. ISBN 9798400707858, pp. 1670–1679. DOI:
10.1145/3624062.3624247.

Aggarwal I, Kashi A, Nayak P, Balos CJ, Woodward CS and Anzt
H (2021) Batched Sparse Iterative Solvers for Computational
Chemistry Simulations on GPUs. In: 2021 12th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). pp. 35–43. DOI:10/gn3xcg.

Anderson E (ed.) (1999) LAPACK Users’ Guide. Software,
Environments, Tools, 3rd ed edition. Philadelphia: Society for
Industrial and Applied Mathematics. ISBN 978-0-89871-447-
0.

Anzt H, Cojean T, Flegar G, Göbel F, Grützmacher T, Nayak P,
Ribizel T, Tsai YM and Quintana-Ortı́ ES (2022) Ginkgo:
A Modern Linear Operator Algebra Framework for High
Performance Computing. ACM Transactions on Mathematical
Software 48(1): 2:1–2:33. DOI:10/gphfsq.

Blackford S and Dongarra J (1991) LAPACK Working Note 41
Installation Guide for LAPACK.

Carroll E, Gloster A, Bustamante MD and Náraigh LÓ (2021) A
Batched GPU Methodology for Numerical Solutions of Partial
Differential Equations. arXiv:2107.05395 [physics] .

Carter Edwards H, Trott CR and Sunderland D (2014) Kokkos:
Enabling manycore performance portability through polymor-
phic memory access patterns. Journal of Parallel and Dis-
tributed Computing DOI:10.1016/j.jpdc.2014.07.003.

Dongarra J, Duff I, Gates M, Haidar A, Hammarling S, Higham
N, Hogg J, Valero-Lara P, Relton SD, Tomov S and Zounon
M (2016) A Proposed API for Batched Basic Linear Algebra
Subprograms. Technical Report 2016.25, The University of
Manchester.

Prepared using sagej.cls

11

(a) Sparsity pattern (b) Eigenvalues

Figure 11. XGC example matrix characteristics for the two species, ion and electron (Kashi et al. (2022))

0 2000 4000 6000 8000

Num batch items

10−2

10−1

T
im

e
(s
)

mkl-omp

gko(non-blocked)

gko(blocked-8)

gko(blocked-2)

magma

1

256 512 1024 2048 4096 8192

Num batch items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
ee
d
u
p

mkl-omp

gko(non-blocked)

gko(blocked-8)

gko(blocked-2)

magma

1
Figure 12. Performance of the batched band solvers with matrices and right hand sides from the plasma physics application, XGC.

Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov
S and Yamazaki I (2014) Accelerating Numerical Dense
Linear Algebra Calculations with GPUs. In: Kindratenko V
(ed.) Numerical Computations with GPUs. Cham: Springer
International Publishing. ISBN 978-3-319-06548-9, pp. 3–28.
DOI:10.1007/978-3-319-06548-9 1.

Dongarra J, Hammarling S, Higham NJ, Relton SD, Valero-Lara P
and Zounon M (2017) The Design and Performance of Batched
BLAS on Modern High-Performance Computing Systems.
Procedia Computer Science 108: 495–504. DOI:10.1016/j.
procs.2017.05.138.

Duff I, Erisman AM and Reid JK (2017) Direct Methods for Sparse
Matrices. Second edition. Oxford University Press. ISBN 978-
0-19-850838-0.

Gloster A, Ó Náraigh L and Pang KE (2019) cuPentBatch—A
batched pentadiagonal solver for NVIDIA GPUs. Computer
Physics Communications 241: 113–121. DOI:10.1016/j.cpc.
2019.03.016.

Hager R, Yoon ES, Ku S, D’Azevedo EF, Worley PH and Chang
CS (2016) A fully non-linear multi-species Fokker–Planck–
Landau collision operator for simulation of fusion plasma.
Journal of Computational Physics 315: 644–660. DOI:10.
1016/j.jcp.2016.03.064.

Hindmarsh AC (2002) SUNDIALS: Suite of Nonlinear/Differen-
tial/Algebraic Equation Solvers. Technical Report UCRL-JC-
149711, Lawrence Livermore National Lab. (LLNL), Liver-
more, CA (United States). DOI:10.1145/1089014.1089020.

Prepared using sagej.cls

12 Journal Title XX(X)

Intel (2021) Intel Xeon 8368 specification. Technical report, Intel
Corporation.

Intel (2023) oneAPI Math Kernel Library. Intel Corporation.
Kashi A, Nayak P, Kulkarni D, Scheinberg A, Lin P and Anzt

H (2022) Batched sparse iterative solvers on GPU for the
collision operator for fusion plasma simulations. In: 2022 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). pp. 157–167. DOI:10.1109/IPDPS53621.2022.
00024.

Kashi A, Nayak P, Kulkarni D, Scheinberg A, Lin P and Anzt
H (2023) Integrating batched sparse iterative solvers for the
collision operator in fusion plasma simulations on GPUs.
Journal of Parallel and Distributed Computing DOI:10.1016/j.
jpdc.2023.03.012.

Klein C and Strzodka R (2021) Tridiagonal GPU Solver with Scaled
Partial Pivoting at Maximum Bandwidth. In: Proceedings
of the 50th International Conference on Parallel Processing,
ICPP ’21. New York, NY, USA: Association for Computing
Machinery. ISBN 978-1-4503-9068-2, pp. 1–10. DOI:10.1145/
3472456.3472484.

Ku S, Chang CS and Diamond PH (2009) Full-f gyrokinetic particle
simulation of centrally heated global ITG turbulence from
magnetic axis to edge pedestal top in a realistic tokamak
geometry. Nuclear Fusion 49(11): 115021. DOI:10.1088/
0029-5515/49/11/115021.

Li XS and Demmel JW (2003) SuperLU DIST: A scalable
distributed-memory sparse direct solver for unsymmetric linear
systems. ACM Transactions on Mathematical Software 29(2):
110–140. DOI:10.1145/779359.779361.

Nayak P, Aggarwal I and Anzt H (2024) Reproducibility artifact
for paper: Efficient batched band solvers on GPUs. Zenodo.
DOI:10.5281/ZENODO.10871244.

Nayak PV (2023) Synchronization-Free Algorithms for Exascale
and beyond : A Study of Asynchronous and Batched Iterative
Methods. PhD Thesis, Karlsruhe Institute of Technology,
Karlsruhe. DOI:10.5445/IR/1000165437.

NVIDIA (2020) NVIDIA A100 Tensor core GPU Architecture.
Technical report, NVIDIA Corporation.

Pérez Diéguez A, Amor López M and Doallo Biempica R
(2018) Solving Multiple Tridiagonal Systems on a Multi-GPU
Platform. In: 2018 26th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (PDP).
pp. 759–763. DOI:10.1109/PDP2018.2018.00123.

Tsai YM, Cojean T, Ribizel T and Anzt H (2021) Preparing
Ginkgo for AMD GPUs – A Testimonial on Porting CUDA
Code to HIP. In: Balis B, B Heras D, Antonelli L,
Bracciali A, Gruber T, Hyun-Wook J, Kuhn M, Scott SL,
Unat D and Wyrzykowski R (eds.) Euro-Par 2020: Parallel
Processing Workshops, Lecture Notes in Computer Science.
Cham: Springer International Publishing. ISBN 978-3-030-
71593-9, pp. 109–121. DOI:10.1007/978-3-030-71593-9 9.

Valero-Lara P, Martı́nez-Perez I, Peña AJ, Martorell X, Sirvent R
and Labarta J (2017) cuHinesBatch: Solving Multiple Hines
systems on GPUs Human Brain Project. Procedia Computer
Science 108: 566–575. DOI:10.1016/j.procs.2017.05.145.

Valero-Lara P, Martı́nez-Pérez I, Sirvent R, Martorell X and
Peña AJ (2018) cuThomasBatch and cuThomasVBatch,
CUDA Routines to compute batch of tridiagonal systems on
NVIDIA GPUs. Concurrency and Computation: Practice and
Experience 30(24): e4909. DOI:10.1002/cpe.4909.

Wang X and Mou Z (1991) A divide-and-conquer method of
solving tridiagonal systems on hypercube massively parallel
computers. In: Proceedings of the Third IEEE Symposium
on Parallel and Distributed Processing. pp. 810–817. DOI:
10.1109/SPDP.1991.218237.

Prepared using sagej.cls

	1 Introduction
	2 Background and Related Work
	3 Ginkgo's batched band solvers
	3.1 Batched band matrix storage format
	3.2 Batched direct solves for band matrices
	3.2.1 Batched LU factorization for band matrices
	3.2.2 Batched triangular solves
	3.2.3 Efficient solution of wide-band matrices

	3.3 Efficient solution of tri-diagonal matrices

	4 Benchmarking and performance evaluation
	4.1 Dataset and evaluation metrics
	4.2 Batched band solvers on GPUs
	4.3 Wide band matrix optimizations
	4.4 Tri-diagonal matrix optimizations
	4.5 Effects of pivoting
	4.6 Linear systems from a plasma physics application

	5 Conclusion

